Patient Specific Biomechanical Modeling of Abdominal Aortic Aneurysm to Improve Aortic Endovascular Repair (AAA2D3DIII)

This project is aiming at the integration of a biomechanical computer program with a guidance code to simulate the endovascular repair (EVAR) procedure of abdominal aortic aneurysm (AAA). The computational time associated with finite element simulation generally renders its usage impractical for real-time application. Based on data collected during clinical interventions and a priori knowledge of AAA and endovascular device mechanical modeling, the investigators are proposing a deformable registration between preoperative CT-scans and per-operative fluoroscopy that will take into account prior simulations of participant specific EVAR procedures. To avoid the computational cost of a full finite element simulation, the investigators propose a simplified and real-time compliant repetitive mechanical behaviour based on participant specific parameters.

The results of this research will provide the Canadian industry with the first realistic deformable vascular geometry tool for live endovascular intervention guidance. The proposed biomechanical modeling can be translated to other vascular intervention procedure by adjusting the biomechanical parameters.

Study Overview

Status

Recruiting

Conditions

Detailed Description

Endovascular surgery requires of special surgical tools inserted and navigated through the vascular system to reach the site of a disease remotely. This navigation and treatment are perform under video X-Ray imager called fluoroscopy. This low-power X-Ray reveals only the bones, even though the surgery is performed on the vessels. Chemical agent dye can paint momentarily the vessel, but this agent is toxic when used in high dosage.

In order to help the surgeon navigate its way, the investigators are developing with Siemens Healthineers an enhance visualization software that displays on the fluoroscopic image the vascular structures of the patient and adapts its shape by the deformation force of the endovascular tools. This can reduce the use of contrast agent, reduce the intervention time (thus reducing radiation exposure) and generally improve the surgical outcomes.

To deform the vascular structure without its visualization, the investigators will use a mathematical function to compute the vessel shape when subjected to endovascular tools influence. This function will be based on biomechanical computer simulations performed on a large database of interventional images. Tissues of the entire abdominal region will be simplified and modeled to achieve the most realistic behaviour. Biomechanical simulations have been used in numerous medical applications as a validation tool. The investigators want to innovate and bring this complex simulation result to a live and reactive application. This technological innovation will improve substantially the performances and reliability of image fusion assisting software and set a new standard in medical care practices.The main objectives of this collaborative research project are:

  1. Build a simulation model dataset based on existing patient data.
  2. Compare simulation on per-operative data and improve the results accuracy over the large dataset by integrating the needed biomechanical properties and constitutive models.
  3. Propose a workflow compatible with the Siemens architecture that implements the simulation output overlay
  4. Based on the investigators existing biomechanical model, identify geometric, biomechanical and patient specific parameters such as tortuosity, calcification degree and distribution, presence and morphology of thrombus, material elastic properties of the incorporated structures and contact mechanics with surrounding structures.
  5. Develop a mathematical tool to deform a vascular model to recreate the numerical mechanical behaviour.
  6. Extend the simulation transfer method to a generic solution that can be adapted for interventions for other anatomic territories (ie neurovascular intervention: vessel deformation from coils and flow diverters)

Study Type

Interventional

Enrollment (Estimated)

20

Phase

  • Not Applicable

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Contact

Study Contact Backup

Study Locations

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

  • Child
  • Adult
  • Older Adult

Accepts Healthy Volunteers

No

Description

Inclusion Criteria:

  • Patients with a clinical indication for EVAR/FEVAR of AAA and meeting anatomic inclusion criteria on preoperative enhanced CT-scan compatible with an endovascular repair.
  • Willing and capable of providing informed consent

Exclusion Criteria:

  • Contraindication to endovascular repair
  • Creatinine clearance < 30ml/min
  • History of severe allergy to iodinated contrast (anaphylaxis, bronchospasm)
  • Absence of recent previous thin-slice enhanced CT-scanner examination (stent planning based on MRI examination or non-enhanced CT examination).

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: Supportive Care
  • Allocation: N/A
  • Interventional Model: Single Group Assignment
  • Masking: None (Open Label)

Arms and Interventions

Participant Group / Arm
Intervention / Treatment
Experimental: Rigid and Elastic registration softwares
Fusion assisting software for image-guided intervention

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Clinical validation of the biomechanical prototype software
Time Frame: DAY 0
Measure of the mean 2D error of renal artery marker position (z direction) on the first DSA acquisition performed after insertion of the main body delivery device as describe in the clinical validation of the biomechanical prototype software.
DAY 0

Secondary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Fluoroscopy time
Time Frame: DAY 0
Measure of the procedural fluoroscopy time and when using the prototype during surgery
DAY 0
Contrast agent used
Time Frame: DAY 0
Measure of the total amount of contrast agent when using the prototype during surgery
DAY 0

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Investigators

  • Principal Investigator: Gilles Soulez, MD,MSc, Centre Hospitalier de l'Université de Montréal (CHUM)

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (Actual)

October 1, 2020

Primary Completion (Estimated)

May 29, 2024

Study Completion (Estimated)

May 29, 2025

Study Registration Dates

First Submitted

March 8, 2018

First Submitted That Met QC Criteria

March 21, 2018

First Posted (Actual)

March 29, 2018

Study Record Updates

Last Update Posted (Actual)

October 2, 2023

Last Update Submitted That Met QC Criteria

September 29, 2023

Last Verified

September 1, 2023

More Information

Terms related to this study

Plan for Individual participant data (IPD)

Plan to Share Individual Participant Data (IPD)?

NO

Drug and device information, study documents

Studies a U.S. FDA-regulated drug product

No

Studies a U.S. FDA-regulated device product

No

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Aortic Aneurysm

Clinical Trials on Biomechanical computer program

3
Subscribe