Exploiting the Potential of Neural Attentional Control to Overcome Hearing Impairment (NeurAttContr)

November 30, 2023 updated by: University of Zurich

This study will improve the understanding of the cerebral mechanisms that underlie the control of auditory selective attention and evaluate the potential of neuromodulation to enhance neural attention control as a possible way to overcome hearing impairment.

First, electroencephalography (EEG) will be applied to identify neural marker of auditory attention in individuals with hearing loss (HL), tinnitus (TI) and normal hearing (NH). Afterwards, the importance of the identified markers for attention control will be tested using non-invasive transcranial alternating current stimulation (tACS) and neurofeedback (NF).

Study Overview

Detailed Description

Hearing loss and associated conditions such as tinnitus are the fourth highest cause of disability worldwide, with estimated annual cost of over 750 billion dollars. Due to the rise and ageing of the global population, the number of people with hearing impairment is growing at a rapid pace. Besides, the incidence of noise induced hearing impairment is also increasing in younger populations. A common complaint of hearing impaired individuals is the significant decline of speech comprehension under challenging listening conditions. These situations typically include reverberations, background noise or multiple speakers and they require the listener to direct attention selectively to a target sound source (e.g. the interlocutor) and to suppress distracting sounds in the background (e.g. from not attended speakers).

Auditory prostheses with pinna-imitating microphones can improve the localization of a target sound source through the sensory enhancement of spatial cues in the acoustic signal. However, the benefit of additional sensory information is limited due of the missing implementation of attention control that would permit the selective amplification of the target sound source and the suppression of irrelevant distracting noise.

The question of how the brain instantiates attentional filter mechanisms that control target amplification and distractor suppression has drawn a lot of interest in the field of cognitive neuroscience. Neural markers of auditory attention such as lateralized oscillatory brain activity in the alpha frequency band (~8-12Hz) and the enhanced neural tracking of attended of attended speech have been linked to the top-down control of attention. However, the interrelationship between these neural markers is still underexplored. Further, the functional role of alpha band oscillations in auditory attention is underspecified as they could potentially implement target enhancement and distractor suppression. Together, this limits the understanding of the neuro-cognitive basis of attention.

The proposed project aims to address this problem by improving the investigators understanding of the cerebral mechanisms that underlie the control of auditory selective attention. The outlined research project will test the hypothesis that individuals with hearing impairment have deficits in auditory distractor inhibition that are reflected by ineffective neural suppression of irrelevant information. This hypothesis will be examined in three different lines of research. In research line 1, I will test a new framework in individuals who suffer from sensorineural hearing loss or tinnitus that allows to dissociate target selection and distractor suppression at the neural level based on electroencephalography (EEG) recordings. In research lines 2-3, I will then evaluate the potential of electric brain stimulation and neurofeedback to enhance auditory distractor suppression.The results of this project will have theoretical implications for current models of auditory attention and speech comprehension by specifying the functional role of oscillatory brain activity in normal hearing individual and hearing impaired populations. Beyond, this research will contribute new insights how the control of auditory selective attention could be implemented in a brain-computer interface.

Study Type

Interventional

Enrollment (Estimated)

275

Phase

  • Not Applicable

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Contact

Study Locations

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

18 years to 75 years (Adult, Older Adult)

Accepts Healthy Volunteers

Yes

Description

Inclusion Criteria:

  • Age: 18-35 / 55-75
  • German as first language
  • Normal or corrected to normal vision
  • Right-handed
  • Normal hearing, hearing impairment or tinnitus (see specified inclusion)
  • Normal hearing: ≤20 decibel (dB) hearing level (HL) at frequencies from 250 Hz to 8,000 Hz for both ears.

Specified inclusion for Experiment 1, 2, 3 & 4:

  • Hearing loss:
  • bilateral symmetrical sensorineural hearing loss
  • pure tone thresholds of ≥25 dB HL at one or more frequencies between 250 Hz and 8,000 Hz and differences in thresholds across the two ears of ≤20 dB at every frequency.
  • Tinnitus:
  • Persistent chronic tinnitus with duration of more than 3 months
  • Tinnitus with a Tinnitus Handicap Inventory Grade 2 to 4 (18-76 points)

Exclusion Criteria:

  • Non-symmetrical hearing loss
  • Raised bi- or multilingually (second language acquired earlier than 6 years of age)
  • Women who are currently pregnant or breastfeeding
  • History of brain injury or any neurological disorder (y/n)

    • For example, stroke, traumatic brain injury, brain surgery, epilepsy etc.

  • Dyslexia
  • History of psychiatric disorder
  • Recent recreational drug consumption
  • Known or suspected drug or alcohol abuse
  • Medication with cognitive side effects (e.g., psychoactive medications or sleeping pills)
  • Metallic implants in the head region (excluding fixed braces and tooth fillings)
  • Any implanted medical device (e.g., cardiac pacemakers)
  • Previous enrolment in one of the experiments comprising the main investigational plan

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: Basic Science
  • Allocation: Randomized
  • Interventional Model: Parallel Assignment
  • Masking: Triple

Arms and Interventions

Participant Group / Arm
Intervention / Treatment
No Intervention: Experiment 1 - Normal hearing - AAT
Each participant assigned to the normal hearing group will undergo one experimental session during which EEG is recorded while participants perform an auditory attention task (AAT).
No Intervention: Experiment 1 - Hearing impaired - AAT
Each participant assigned to the normal hearing impaired group will undergo one experimental session during which EEG is recorded while participants perform an auditory attention task (AAT).
No Intervention: Experiment 2 - normal hearing _ SAT
Each participant assigned to the normal hearing group will undergo one experimental session in which EEG is used to measure neural speech tracking while participants undergo the selective speech attention task (SAT).
No Intervention: Experiment 2 - hearing impaired - SAT
Each participant assigned to the hearing impaired group will undergo one experimental session in which EEG is used to measure neural speech tracking while participants undergo the selective speech attention task (SAT).
No Intervention: Experiment 2 - tinnitus - SAT
Each participant assigned to the tinnitus group will undergo one experimental session in which EEG is used to measure neural speech tracking while participants undergo the selective speech attention task (SAT).
Experimental: Experiment 3 - normal hearing (tACS) - AAT

The subjects assigned to the normal hearing group will undertake 20min tACS stimulation applied over the temporo-parietal cortex.

Each session will include the following three phases: (1) pre-stimulation baseline, (2) brain stimulation, and (3) post-stimulation. AAT will be conducted in each phase and concurrent EEG will be recorded.

TACS is a non-invasive brain stimulation (NIBS) techniques that belong to the class of low current transcranial electric stimulation. In contrast to the better known transcranial direct current stimulation (tDCS), the tACS current is not constant, but alternates with a certain frequency.

The stimulation will be applied over the left temporo-parietal cortex at participants' individual alpha frequency. The stimulation intensity will be 2 milliampere (mA, peak-to-peak value, corresponding to a sine wave of ±1 mA amplitude). Stimulation will be delivered through conductive rubber electrodes.

Sham Comparator: Experiment 3 - normal hearing (sham) - AAT

The subjects assigned to the normal hearing group will undertake 20min sham stimulation applied over the temporo-parietal cortex.

Each session will include the following three phases: (1) pre-stimulation baseline, (2) sham brain stimulation, and (3) post-stimulation. AAT will be conducted in each phase and concurrent EEG will be recorded.

During "sham stimulation" (placebo), tACS will be ramped up and down for 12 seconds , that is, no electric stimulation wil be applied during the actual experiment. The up and down ramping will be repeated at the end of the experiment.

The sham condition serves to evoke sensations associated with tACS stimulation, but without stimulating during the actual experiment.

Experimental: Experiment 3 - hearing impaired (tACS) - AAT

The subjects assigned to the hearing impaired group will undertake 20min tACS stimulation applied over the temporo-parietal cortex.

Each session will include the following three phases: (1) pre-stimulation baseline, (2) brain stimulation, and (3) post-stimulation. AAT will be conducted in each phase and concurrent EEG will be recorded.

TACS is a non-invasive brain stimulation (NIBS) techniques that belong to the class of low current transcranial electric stimulation. In contrast to the better known transcranial direct current stimulation (tDCS), the tACS current is not constant, but alternates with a certain frequency.

The stimulation will be applied over the left temporo-parietal cortex at participants' individual alpha frequency. The stimulation intensity will be 2 milliampere (mA, peak-to-peak value, corresponding to a sine wave of ±1 mA amplitude). Stimulation will be delivered through conductive rubber electrodes.

Sham Comparator: Experiment 3 - hearing impaired (sham) - AAT

The subjects assigned to the hearing impaired group will undertake 20min sham stimulation applied over the temporo-parietal cortex.

Each session will include the following three phases: (1) pre-stimulation baseline, (2) sham brain stimulation, and (3) post-stimulation. AAT will be conducted in each phase and concurrent EEG will be recorded.

During "sham stimulation" (placebo), tACS will be ramped up and down for 12 seconds , that is, no electric stimulation wil be applied during the actual experiment. The up and down ramping will be repeated at the end of the experiment.

The sham condition serves to evoke sensations associated with tACS stimulation, but without stimulating during the actual experiment.

Experimental: Experiment 3 - tinnitus (tACS) - AAT

The subjects assigned to the tinnitus group will undertake 20min tACS stimulation applied over the temporo-parietal cortex.

Each session will include the following three phases: (1) pre-stimulation baseline, (2) brain stimulation, and (3) post-stimulation. AAT will be conducted in each phase and concurrent EEG will be recorded.

TACS is a non-invasive brain stimulation (NIBS) techniques that belong to the class of low current transcranial electric stimulation. In contrast to the better known transcranial direct current stimulation (tDCS), the tACS current is not constant, but alternates with a certain frequency.

The stimulation will be applied over the left temporo-parietal cortex at participants' individual alpha frequency. The stimulation intensity will be 2 milliampere (mA, peak-to-peak value, corresponding to a sine wave of ±1 mA amplitude). Stimulation will be delivered through conductive rubber electrodes.

Sham Comparator: Experiment 3 - tinnitus (sham) - AAT

The subjects assigned to the tinnitus group will undertake 20min sham stimulation applied over the temporo-parietal cortex.

Each session will include the following three phases: (1) pre-stimulation baseline, (2) sham brain stimulation, and (3) post-stimulation. AAT will be conducted in each phase and concurrent EEG will be recorded.

During "sham stimulation" (placebo), tACS will be ramped up and down for 12 seconds , that is, no electric stimulation wil be applied during the actual experiment. The up and down ramping will be repeated at the end of the experiment.

The sham condition serves to evoke sensations associated with tACS stimulation, but without stimulating during the actual experiment.

Experimental: Experiment 4 - normal hearing (tACS) - SAT

The subjects assigned to the normal hearing group will undertake 20min tACS stimulation applied over the temporo-parietal cortex.

Each session will include the following three phases: (1) pre-stimulation baseline, (2) brain stimulation, and (3) post-stimulation. SAT will be conducted in each phase and concurrent EEG will be recorded.

TACS is a non-invasive brain stimulation (NIBS) techniques that belong to the class of low current transcranial electric stimulation. In contrast to the better known transcranial direct current stimulation (tDCS), the tACS current is not constant, but alternates with a certain frequency.

The stimulation will be applied over the left temporo-parietal cortex at participants' individual alpha frequency. The stimulation intensity will be 2 milliampere (mA, peak-to-peak value, corresponding to a sine wave of ±1 mA amplitude). Stimulation will be delivered through conductive rubber electrodes.

Sham Comparator: Experiment 4 - normal hearing (sham) - SAT

The subjects assigned to the normal hearing group will undertake 20min sham stimulation applied over the temporo-parietal cortex.

Each session will include the following three phases: (1) pre-stimulation baseline, (2) sham brain stimulation, and (3) post-stimulation. SAT will be conducted in each phase and concurrent EEG will be recorded.

During "sham stimulation" (placebo), tACS will be ramped up and down for 12 seconds , that is, no electric stimulation wil be applied during the actual experiment. The up and down ramping will be repeated at the end of the experiment.

The sham condition serves to evoke sensations associated with tACS stimulation, but without stimulating during the actual experiment.

Experimental: Experiment 4 - hearing impaired (tACS) - SAT

The subjects assigned to the hearing impaired group will undertake 20min tACS stimulation applied over the temporo-parietal cortex.

Each session will include the following three phases: (1) pre-stimulation baseline, (2) brain stimulation, and (3) post-stimulation. SAT will be conducted in each phase and concurrent EEG will be recorded.

TACS is a non-invasive brain stimulation (NIBS) techniques that belong to the class of low current transcranial electric stimulation. In contrast to the better known transcranial direct current stimulation (tDCS), the tACS current is not constant, but alternates with a certain frequency.

The stimulation will be applied over the left temporo-parietal cortex at participants' individual alpha frequency. The stimulation intensity will be 2 milliampere (mA, peak-to-peak value, corresponding to a sine wave of ±1 mA amplitude). Stimulation will be delivered through conductive rubber electrodes.

Sham Comparator: Experiment 4 - hearing impaired (sham) - SAT

The subjects assigned to the hearing impaired group will undertake 20min sham stimulation applied over the temporo-parietal cortex.

Each session will include the following three phases: (1) pre-stimulation baseline, (2) sham brain stimulation, and (3) post-stimulation. SAT will be conducted in each phase and concurrent EEG will be recorded.

During "sham stimulation" (placebo), tACS will be ramped up and down for 12 seconds , that is, no electric stimulation wil be applied during the actual experiment. The up and down ramping will be repeated at the end of the experiment.

The sham condition serves to evoke sensations associated with tACS stimulation, but without stimulating during the actual experiment.

Experimental: Experiment 4 - tinnitus (tACS) - SAT

The subjects assigned to the tinnitus group will undertake 20min tACS stimulation applied over the temporo-parietal cortex.

Each session will include the following three phases: (1) pre-stimulation baseline, (2) brain stimulation, and (3) post-stimulation. SAT will be conducted in each phase and concurrent EEG will be recorded.

TACS is a non-invasive brain stimulation (NIBS) techniques that belong to the class of low current transcranial electric stimulation. In contrast to the better known transcranial direct current stimulation (tDCS), the tACS current is not constant, but alternates with a certain frequency.

The stimulation will be applied over the left temporo-parietal cortex at participants' individual alpha frequency. The stimulation intensity will be 2 milliampere (mA, peak-to-peak value, corresponding to a sine wave of ±1 mA amplitude). Stimulation will be delivered through conductive rubber electrodes.

Sham Comparator: Experiment 4 - tinnitus (sham) - SAT

The subjects assigned to the tinnitus group will undertake 20min sham stimulation applied over the temporo-parietal cortex.

Each session will include the following three phases: (1) pre-stimulation baseline, (2) sham brain stimulation, and (3) post-stimulation. SAT will be conducted in each phase and concurrent EEG will be recorded.

During "sham stimulation" (placebo), tACS will be ramped up and down for 12 seconds , that is, no electric stimulation wil be applied during the actual experiment. The up and down ramping will be repeated at the end of the experiment.

The sham condition serves to evoke sensations associated with tACS stimulation, but without stimulating during the actual experiment.

Experimental: Experiment 5 - normal hearing (NF right) - AAT
Each participant of the normal hearing group will undergo the neurofeedback training in which the participants learn to increase alpha power in the right relative to the left parietal cortex. Before and after the NF training, participants will perform the AAT and concurrent EEG will be recorded.

Neurofeedback (NF) is a non-invasive approach that combines neurophysiological recordings with real-time sensory feedback (most studies use visual feedback). Through real-time NF, individuals thus can learn to regulate their brain activity.

In this study, NF will be based on concurrent EEG recordings. During NF, participants will observe a space ship automatically navigating through a narrow tunnel. The modulation of their neural alpha power lateralization into the trained direction will be rewarded by the acceleration of the space ship, a modulation in the opposite direction will reduce speed and autopilot accuracy.

Active Comparator: Experiment 5 - normal hearing (NF left) - AAT
Each participant of the normal hearing group will undergo the neurofeedback training in which the participants learn to increase alpha power in the left relative to the right parietal cortex. Before and after the NF training, participants will perform the AAT and concurrent EEG will be recorded.

Neurofeedback (NF) is a non-invasive approach that combines neurophysiological recordings with real-time sensory feedback (most studies use visual feedback). Through real-time NF, individuals thus can learn to regulate their brain activity.

In this study, NF will be based on concurrent EEG recordings. During NF, participants will observe a space ship automatically navigating through a narrow tunnel. The modulation of their neural alpha power lateralization into the trained direction will be rewarded by the acceleration of the space ship, a modulation in the opposite direction will reduce speed and autopilot accuracy.

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Experiment 1 - EEG
Time Frame: One study session of 4 hours and 40 minutes
The primary endpoint is the comparison of neural alpha power lateralization in response to target selection and distractor suppression in individuals with HL, TI and a NH control group.
One study session of 4 hours and 40 minutes
Experiment 2 - EEG
Time Frame: One study session of 4 hours and 40 minutes
The primary endpoint is the comparison of the neural tracking of the amplitude envelope of speech between individuals with HL, TI and NH.
One study session of 4 hours and 40 minutes
Experiment 3 - AAT
Time Frame: One study session of 4 hours and 40 minutes
The primary endpoint is the comparison of auditory attention performance between tACS over the left temporo-parietal cortex, and an ineffective sham stimulation during and after stimulation relative to pre-stimulation baseline.
One study session of 4 hours and 40 minutes
Experiment 4 - SAT
Time Frame: One study session of 4 hours and 40 minutes
The primary endpoint is the comparison of speech comprehension performance between tACS over the left temporo-parietal cortex, and an ineffective sham stimulation during and after stimulation relative to pre-stimulation baseline.
One study session of 4 hours and 40 minutes
Experiment 5 - EEG 1
Time Frame: two sessions of 4 hours and 40 minutes on separate days
The primary endpoint is the comparison of participants' ability to control alpha power lateralization index during training between training conditions (left NF training vs. right NF training).
two sessions of 4 hours and 40 minutes on separate days

Secondary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Experiment 1 - AAT
Time Frame: One study session of 4 hours and 40 minutes
To test whether alpha power lateralization during distractor suppression and target selection predicts AAT task performance in HL, TI, and NH individuals.
One study session of 4 hours and 40 minutes
Experiment 2 - SAT
Time Frame: One study session of 4 hours and 40 minutes
The relation between neural speech tracking and speech comprehension performance in NH, HL, and TI
One study session of 4 hours and 40 minutes
Experiment 3 - EEG 1
Time Frame: One study session of 4 hours and 40 minutes
Comparison of neural alpha power lateralization between stimulation conditions (tACS vs. sham)
One study session of 4 hours and 40 minutes
Experiment 3 - EEG 2
Time Frame: One study session of 4 hours and 40 minutes
Comparison of event-related responses to target and distractor stimuli between stimulation conditions (tACS vs. sham)
One study session of 4 hours and 40 minutes
Experiment 4 - EEG 1
Time Frame: One study session of 4 hours and 40 minutes
Comparison of lateralization index between stimulation conditions (tACS vs. sham)
One study session of 4 hours and 40 minutes
Experiment 4 - EEG 2
Time Frame: One study session of 4 hours and 40 minutes
Comparison between neural tracking of target and distracting speech between stimulation conditions (tACS vs. sham)
One study session of 4 hours and 40 minutes
Experiment 5 - EEG 2
Time Frame: two sessions of 4 hours and 40 minutes on separate days
Comparison of auditory evoked responses to probes presented ipsilateral vs. contralateral to the trained hemisphere
two sessions of 4 hours and 40 minutes on separate days
Experiment 5 - EEG 3
Time Frame: two sessions of 4 hours and 40 minutes on separate days
Comparison of changes in target and distractor related alpha power lateralization between NF training conditions (left NF training vs. right NF training) pre- vs post NF Training
two sessions of 4 hours and 40 minutes on separate days
Experiment 5 - AAT
Time Frame: two sessions of 4 hours and 40 minutes on separate days
Comparison of auditory attention performance across training conditions (left NF training vs. right NF training)
two sessions of 4 hours and 40 minutes on separate days

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Collaborators

Investigators

  • Principal Investigator: Basil Preisig, Dr., University of Zurich

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (Actual)

November 1, 2023

Primary Completion (Estimated)

April 1, 2026

Study Completion (Estimated)

April 1, 2026

Study Registration Dates

First Submitted

August 17, 2022

First Submitted That Met QC Criteria

August 23, 2022

First Posted (Actual)

August 24, 2022

Study Record Updates

Last Update Posted (Estimated)

December 7, 2023

Last Update Submitted That Met QC Criteria

November 30, 2023

Last Verified

November 1, 2023

More Information

Terms related to this study

Plan for Individual participant data (IPD)

Plan to Share Individual Participant Data (IPD)?

YES

IPD Plan Description

The investigators intend to share the raw data of the included participants and the analysis code.

IPD Sharing Time Frame

after the project is completed

IPD Sharing Access Criteria

upon personal request

IPD Sharing Supporting Information Type

  • STUDY_PROTOCOL
  • SAP
  • ANALYTIC_CODE

Drug and device information, study documents

Studies a U.S. FDA-regulated drug product

No

Studies a U.S. FDA-regulated device product

No

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Hearing Loss

Clinical Trials on tACS - transcranial alternating current stimulation

3
Subscribe