Transcatheter Renal Artery Sympathetic Denervation Observational Study

February 15, 2023 updated by: Gormin Tan, Chinese University of Hong Kong

The Systemic Effects of Transcatheter Renal Artery Sympathetic Denervation Using a Second- Generation Radiofrequency Ablation Catheter: A Multicenter Observational Study.

Hypertension is a common health problem that affects millions of people in the world. Poorly controlled blood pressure (BP) leads to cardiovascular, cerebrovascular and renal complications. Despite the availability of multitudes of anti-hypertensive drugs, the percentage of patients achieving optimal control of hypertension has remained disappointingly low.

Resistant hypertension (rHT) is defined as the failure to achieve target BP despite concurrent use of antihypertensive drugs of different classes, with one of them being diuretics. The reported prevalence of this condition ranged from 5 to 30%. Lifestyle modification, enhancing drug compliance, treating of secondary causes, or adding mineralocorticoid receptor antagonist such as spironolactone or eplerenone are well established strategies to treat resistant hypertension.

Besides factors such as, activated sympathetic nervous system (SNS) and increased sympathetic outflow was thought to contribute to the development of rHT as well. Autonomic sympathectomy by way of endovascular renal denervation (RDN) was once a hopeful candidate as an adjuvant treatment for patients with rHT and it had shown signals of efficacy in early trials. However, the blood-pressure lowering efficacy was not demonstrated in the larger-scaled, randomized, sham- controlled SYMPLICITY HTN-3 trial. One possible explanation of the lack of efficacy of RDN in this trial was the lower-than-expected BP responses in the RDN group and higher than-expected BP reduction in the control group which raised the speculation that some of the patients recruited were not true rHT as the trial intended to include. The suboptimal anti-hypertensive efficacy of RDN in HTN-3 was also partly attributed to the design of the first-generation RDN catheter, in which only a single electrode is deployed and might not offer sufficient sympathetic denervation as less than half of patients in the SYMPLICITY HTN-3 received 4 quadrants ablation.

The second generation SYMPLICITY RDN catheterTM has 4 times electrodes that are arranged in spirally in 90-degree intervals. Theoretically, the newer generation catheter can provide more efficient and extensive denervation in a shorter period of time. Its efficacy was confirmed in SYMPLICITY HTN ON-MED and OFF-MED trial, which confirmed a consistent and durable BP reduction that lasted into 36 months with or without adjuvant anti-hypertensive drugs.

BP reduction is only one of the effects of RDN. Previous observational studies of the first generation RDN catheter have shown an inconsistent effect of RDN in left ventricular (LV) remodelling, arrythmia modulation, arterial de-stiffening and quality of life. No report of these effects has been published with the newer generation catheter. Furthermore, vigorous efforts have been put into searching for clinical predictors that can identify patients in whom the BP reduction effect of RDN is most significant.

This study aims to investigate the systemic effects of RDN using the new generation SYMLICITY RDN catheterTM in patients with rHT.

Study Overview

Status

Recruiting

Conditions

Detailed Description

Hypertension is a common health problem that affects millions of people in the world. Poorly controlled blood pressure (BP) leads to cardiovascular, cerebrovascular and renal complications. Despite the availability of multitudes of anti-hypertensive drugs, the percentage of patients achieving optimal control of hypertension has remained disappointingly low.

Resistant hypertension (rHT) is defined as the failure to achieve target BP despite concurrent use of antihypertensive drugs of different classes, with one of them being diuretics. The reported prevalence of this condition ranged from 5 to 30%. Lifestyle modification, enhancing drug compliance, treating of secondary causes, or adding mineralocorticoid receptor antagonist such as spironolactone or eplerenone are well established strategies to treat resistant hypertension.

Besides factors such as, activated sympathetic nervous system (SNS) and increased sympathetic outflow was thought to contribute to the development of rHT as well. Autonomic sympathectomy by way of endovascular renal denervation (RDN) was once a hopeful candidate as an adjuvant treatment for patients with rHT and it had shown signals of efficacy in early trials. However, the blood-pressure lowering efficacy was not demonstrated in the larger-scaled, randomized, sham- controlled SYMPLICITY HTN-3 trial. One possible explanation of the lack of efficacy of RDN in this trial was the lower-than-expected BP responses in the RDN group and higher than-expected BP reduction in the control group which raised the speculation that some of the patients recruited were not true rHT as the trial intended to include. The suboptimal anti-hypertensive efficacy of RDN in HTN-3 was also partly attributed to the design of the first-generation RDN catheter, in which only a single electrode is deployed and might not offer sufficient sympathetic denervation as less than half of patients in the SYMPLICITY HTN-3 received 4 quadrants ablation.

The second generation SYMPLICITY RDN catheterTM has 4 times electrodes that are arranged in spirally in 90-degree intervals. Theoretically, the newer generation catheter can provide more efficient and extensive denervation in a shorter period of time. Its efficacy was confirmed in SYMPLICITY HTN ON-MED and OFF-MED trial, which confirmed a consistent and durable BP reduction that lasted into 36 months with or without adjuvant anti-hypertensive drugs.

BP reduction is only one of the effects of RDN. Previous observational studies of the first generation RDN catheter have shown an inconsistent effect of RDN in left ventricular (LV) remodelling, arrythmia modulation, arterial de-stiffening and quality of life. No report of these effects has been published with the newer generation catheter. Furthermore, vigorous efforts have been put into searching for clinical predictors that can identify patients in whom the BP reduction effect of RDN is most significant.

This study aims to investigate the systemic effects of RDN using the new generation SYMLICITY RDN catheterTM in patients with rHT.

Study Type

Observational

Enrollment (Anticipated)

100

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Locations

    • Shatin
      • Hong Kong, Shatin, Hong Kong, 0000
        • Recruiting
        • Prince of Wales Hospital
        • Contact:

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

19 years and older (Adult, Older Adult)

Accepts Healthy Volunteers

No

Genders Eligible for Study

All

Sampling Method

Non-Probability Sample

Study Population

This is a feasibility study, small sample size serves as a proof of concept

Description

Inclusion Criteria:

  1. Subject age >18.
  2. Subject (or legal guardian) understands the study procedures and provides written informed consent.
  3. Subject is recruited for Transcatheter Renal Denervation Procedure.

Exclusion Criteria:

There is no exclusion criteria.

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Time Frame
Changes in SBP and DBP as measured by office BP measurement and by 24 hours ABPM
Time Frame: 24 hours
24 hours
Changes in Echocardiographic parameters including LV wall thickness, LV mass, LV dimension, LV systolic function, LV diastolic function, LV global longitudinal strain, LA volume, LA strain, descending aortic circumferential strain, and RV function.
Time Frame: 24 hours
24 hours
Changes in arterial stiffness as measured by brachial pulse wave velocity.
Time Frame: 24 hours
24 hours
Changes in serum renin/aldosterone level and 24 hours urine metanephrines
Time Frame: 24 hours
24 hours

Secondary Outcome Measures

Outcome Measure
Time Frame
Change in number and dose of anti-hypertensives
Time Frame: 6-months
6-months
Change in renal function as measured by estimated GFR and urine albumin creatine ratio.
Time Frame: 6-months
6-months
Change in Patient's SF 36 survey
Time Frame: 6-months
6-months
Change in Hba1c
Time Frame: 6-months
6-months
MACE including occurrence of new myocardial infarction or stroke.
Time Frame: 6-months
6-months
All course morality
Time Frame: 6-months
6-months
Change in renal function as measured by urine albumin creatine ratio.
Time Frame: 6-months
6-months
Change in LDL and HDL
Time Frame: 6-months
6-months

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Publications and helpful links

The person responsible for entering information about the study voluntarily provides these publications. These may be about anything related to the study.

General Publications

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (Actual)

November 22, 2022

Primary Completion (Anticipated)

November 22, 2024

Study Completion (Anticipated)

January 22, 2025

Study Registration Dates

First Submitted

February 2, 2023

First Submitted That Met QC Criteria

February 15, 2023

First Posted (Estimate)

February 27, 2023

Study Record Updates

Last Update Posted (Estimate)

February 27, 2023

Last Update Submitted That Met QC Criteria

February 15, 2023

Last Verified

February 1, 2023

More Information

Terms related to this study

Plan for Individual participant data (IPD)

Plan to Share Individual Participant Data (IPD)?

UNDECIDED

Drug and device information, study documents

Studies a U.S. FDA-regulated drug product

No

Studies a U.S. FDA-regulated device product

No

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Hypertension, Renal

Clinical Trials on SYMPICITY Spyral RENAL DENERVATION (RDN) SYSTEMTM

3
Subscribe