Transcranial Electrical Stimulation for mTBI (TESmTBI)

December 21, 2023 updated by: VA Office of Research and Development

Passive Electrical Neurofeedback Treatment of mTBI: MEG and Behavioral Outcomes

mTBI is a leading cause of sustained physical, cognitive, emotional, and behavioral deficits in OEF/OIF/OND Veterans and the general public. However, the underlying pathophysiology is not completely understood, and there are few effective treatments for post-concussive symptoms (PCS). In addition, there are substantial overlaps between PCS and PTSD symptoms in mTBI. IASIS is among a class of passive neurofeedback treatments that combine low-intensity pulses for transcranial electrical stimulation (LIP-tES) with EEG monitoring. Nexalin is another tES technique , with FDA approvals for treating insomnia, depression, and anxiety. LIP-tES techniques have shown promising results in alleviating PCS individuals with TBI. However, the neural mechanisms underlying the effects of LIP-tES treatment in TBI are unknown, owing to the dearth of neuroimaging investigations of this therapeutic intervention. Conventional neuroimaging techniques such as MRI and CT have limited sensitivity in detecting physiological abnormalities caused by mTBI, or in assessing the efficacy of mTBI treatments. In acute and chronic phases, CT and MRI are typically negative even in mTBI patients with persistent PCS. In contrast, evidence is mounting in support of resting-state magnetoencephalography (rs-MEG) slow-wave source imaging (delta-band, 1-4 Hz) as a marker for neuronal abnormalities in mTBI. The primary goal of the present application is to use rs-MEG to identify the neural underpinnings of behavioral changes associated with IASIS treatment in Veterans with mTBI. Using a double-blind placebo controlled design, the investigators will study changes in abnormal MEG slow-waves before and after IASIS treatment (relative to a 'sham' treatment group) in Veterans with mTBI. For a subset of participants who may have remaining TBI symptoms at the end of all IASIS treatment sessions, MEG slow-wave changes will be recorded before and after additional Nexalin treatment. In addition, the investigators will examine treatment-related changes in PCS, PTSD symptoms, neuropsychological test performances, and their association with changes in MEG slow-waves. The investigators for the first time will address a fundamental question about the mechanism of slow-waves in brain injury, namely whether slow-wave generation in wakefulness is merely a negative consequence of neuronal injury or if it is a signature of ongoing neuronal rearrangement and healing that occurs at the site of the injury.

Study Overview

Status

Completed

Intervention / Treatment

Detailed Description

Mild traumatic brain injury (mTBI) is a leading cause of sustained physical, cognitive, emotional, and behavioral deficits in OEF/OIF/OND Veterans and the general public. However, the underlying pathophysiology is not completely understood, and there are few effective treatments for post-concussive symptoms (PCS). In addition, there are substantial overlaps between PCS and post-traumatic stress disorder (PTSD) symptoms in mTBI. Furthermore, a substantial number of studies have shown higher (nearly double) rates of comorbid PTSD in individuals with mTBI, observed in military and civilian settings. IASIS is among a class of passive neurofeedback treatments that combine low-intensity pulses for transcranial electrical stimulation (LIP-tES) with electroencephalography (EEG) monitoring. Nexalin is another tES technique , with FDA approvals for treating insomnia, depression, and anxiety. LIP-tES techniques have shown promising results in alleviating PCS in individuals with TBI. However, the neural mechanisms underlying the effects of LIP-tES treatment in TBI are unknown, owing to the dearth of neuroimaging investigations of this therapeutic intervention. Conventional neuroimaging techniques such as MRI and CT have limited sensitivity in detecting physiological abnormalities caused by mTBI, or in assessing the efficacy of mTBI treatments. In acute and chronic phases, CT and MRI are typically negative even in mTBI patients with persistent PCS. In contrast, evidence is mounting in support of resting-state magnetoencephalography (rs-MEG) slow-wave source imaging as a non-invasive imaging marker for neuronal abnormalities in mTBI. Using region of interest (ROI) and voxel-wise approaches, the investigators demonstrated that MEG slowwave source imaging detects abnormal slow-waves (delta-band, 1-4 Hz) with ~85% sensitivity in chronic and sub-acute mTBI patients with persistent PCS. The primary goal of the present application is to use rs- MEG to identify the neural underpinnings of behavioral changes associated with IASIS treatment in Veterans with mTBI. Using a double-blind placebo controlled design, the investigators will study changes in abnormal MEG slowwaves before and after IASIS treatment (relative to a 'sham' treatment group), and for a subset, before and after additional Nexalin treatment, in Veterans with mTBI. In addition, the investigators will examine treatment-related changes in PCS, PTSD symptoms, neuropsychological test performances, and their association with changes in MEG slow-waves. Pre-treatment baseline and posttreatment rs-MEG exams, symptoms assessments, and neuropsychological tests will be performed. The investigators for the first time will address a fundamental question about the mechanism of slow-waves in brain injury, namely whether slow-wave generation in wakefulness is merely a negative consequence of neuronal injury or if it is a signature of ongoing neuronal rearrangement and healing that occurs at the site of the injury.

Specific Aim 1: To detect the loci of injury in Veterans with mTBI and assess the mechanisms underlying functional neuroimaging changes related to IASIS treatment, and for a subset of Veterans with remaining symptoms, additional Nexalin treatment, using rs-MEG slow-wave source imaging. The investigators' voxel-wise rs-MEG source-imaging technique will be used to identify abnormal slow-wave generation (delta band) in the baseline and post-treatment MEG exams to assess treatment-related changes on a single-subject basis. Healthy control (HC) Veterans, matched for combat exposure, will be used to establish an MEG normative database. Test-retest reliability of MEG slow-wave source imaging for mTBI will also be examined.

Hypothesis 1: Veterans with mTBI will generate abnormal MEG slow-waves during the baseline MEG exam. Voxel-wise MEG slow-wave source imaging will show significantly higher sensitivity than conventional MRI in identifying the loci of injury on a single-subject basis. The test-retest reliability of MEG slow-wave source imaging is expected to be high, with intra-class correlation coefficient (ICC) 0.75 between two sequential MEG exams.

Hypothesis 2: In wakefulness, slow-wave generation is a signature of ongoing neural rearrangement/ healing, rather than a negative consequence of neuronal injury. IASIS treatment will enhance neural rearrangement/healing by initially potentiating slow-wave generation immediately after each treatment session.

Hypothesis 3: IASIS will ultimately reduce abnormal MEG slow-wave generation in mTBI by the end of the treatment course, owing to the accomplishment of neural rearrangement / healing. In Veterans with mTBI who finish IASIS treatment, but not in the sham group, MEG source imaging will show a significant decrease in abnormal slow-waves at post-treatment exam. Such significant decreases will also be evident in both the voxel-wise and overall abnormal MEG slow-wave measures.

Specific Aim 2: To examine treatment-related changes in PCS and PTSD symptoms in Veterans with mTBI. PCS and PTSD symptoms will be assessed at the baseline and post-treatment follow-up visits.

Hypothesis 4: Compared with the sham group, mTBI Veterans in the IASIS treatment group will show significantly greater decreases in PCS symptoms between baseline and post-treatment assessments.

Hypothesis 5: Compared with the sham group, mTBI Veterans in the IASIS treatment group will also show significantly greater decreases in PTSD symptoms between baseline and post-treatment assessments.

Specific Aim 3: To study the relationship among IASIS treatment-related changes in rs-MEG slow-wave imaging, PCS, and neuropsychological measures in Veterans with mTBI. The investigators will correlate changes between baseline and post-IASIS abnormal rs-MEG slow-wave generation (i.e., total abnormal rs-MEG slow-wave and voxel-wise source imaging measures) with changes in PCS and neuropsychological tests performance.

Hypothesis 6: Reduced MEG slow-wave generation will correlate with reduced total PCS score, individual PCS scores (e.g., sleep disturbance, post-traumatic headache, photophobia, and memory problem symptoms), and improved neuropsychological exam scores between post-IASIS and baseline exams.

Study Type

Interventional

Enrollment (Actual)

66

Phase

  • Not Applicable

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Locations

    • California
      • San Diego, California, United States, 92161
        • VA San Diego Healthcare System, San Diego, CA

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

16 years to 58 years (Adult)

Accepts Healthy Volunteers

Yes

Description

Inclusion Criteria:

Inclusion of Veterans for the mTBI groups:

  • All symptomatic mTBI patients will be evaluated in a clinical interview to document the nature of the injuries and ongoing PCS.
  • The diagnosis of mTBI patients is based on standard VA/DOD diagnostic criteria.
  • Inclusion in the mTBI patient group requires a TBI that meets the following criteria:

    • a loss of consciousness (LOC) < 30 minutes or transient confusion, disorientation, or impaired consciousness immediately after the trauma
    • post-traumatic amnesia (PTA) < 24 hours
    • an initial Glasgow Coma Scale (GCS) [90] between 13-15 (if available)
  • Since the GCS assessment is often not available in theater, Veterans with missing GCS, but who meet other inclusion criteria will also be recruited.
  • Each patient must have at least 3 items of persistent PCS at the beginning of the study.

Inclusion of Healthy Control (HC) group:

  • Veterans that qualify as HCs will be age, education, combat exposure, and socioeconomically matched to the mTBI groups.
  • In addition to exclusion criteria listed above, HC subjects must not have been diagnosed with head injury, affective disorder, or PTSD (CAPS-5 < 8) throughout life.

Exclusion Criteria:

  • Exclusion criteria for study participations include:
  • history of other neurological, developmental, or psychiatric disorders (based on the DSM-5 (MINI-7) [86] structured interview), e.g.,:

    • brain tumor
    • stroke
    • epilepsy
    • Alzheimer's disease
    • schizophrenia
    • bipolar disorder
    • ADHD
    • or other chronic neurovascular diseases such as hypertension and diabetes
  • substance or alcohol use disorders according to DSM-5 [87] criteria within the six months prior to the study
  • history of metabolic or other diseases known to affect the central nervous system (see [88] for similar criteria)
  • Metal objects (e.g., shrapnel or metal fragments) that fail MRI screening, or extensive metal dental hardware, e.g.,:

    • braces and large metal dentures

      • fillings are acceptable
    • other metal objects in the head
    • neck, or face areas that cause non-removable artifacts in the MEG data
  • Potential subjects will be administered the Beck Depression Inventory (BDI-II) to evaluate level of depressive symptoms, and suicidal ideation

    • any participant who reports a "2" or "3" on the BDI-II: item 9 (suicidal thoughts or wishes) will also be excluded.
    • However, depression following mTBI or traumatic event of PTSD is common [89]: therefore, in two mTBI groups, the investigators will include and match patients with depression symptoms reported after their injury/event, and will co-vary BDI-II score in data analyses.

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: Treatment
  • Allocation: Randomized
  • Interventional Model: Parallel Assignment
  • Masking: Double

Arms and Interventions

Participant Group / Arm
Intervention / Treatment
No Intervention: Control
Veterans who are age-, gender-, education-, combat exposure-, and socioeconomically-matched. They will not undergo a treatment.
Experimental: Transcranial Electrical Stimulation (TES)
mTBI Veterans blindly assigned to a 6 week of TES, either IASIS neurofeedback treatment or Nexalin, with 2-3 sessions per week.

The EEG interface device is the J&J Engineering I-330 C2. IASIS is delivered via the 4 EEG leads with respect to the Common Neck Reference. During each session, 2 electrodes are attached to the participant's left and right mastoids, while the remaining 2 electrodes are moved to various locations on the scalp to record EEG signals. All 4 electrodes are involved in applying weak electric current pulses back to the brain. The feedback signal consists 2 types of narrow pulse trains, both with 150mV in amplitude.

The Nexalin device, FDA clearance (501K=K024377, Classification: Stimulator, Cranial Electrotherapy: CFR 882. 5800: U.S. Patent #6904322B2), produces a waveform that provides tES to the brain delivered at a frequency of 4Hz, 40Hz, and 77.5Hz at 0 to 15mA peak current. Evidence shows this waveform, at these frequencies, results in improved clinical outcomes for anxiety and pain. We hypothesize that repeated TES treatments serve to stimulate long-term neurochemical changes.

Other Names:
  • LIP-tES intervention
Placebo Comparator: Sham Treatment
mTBI Veterans blindly assigned to a sham treatment for 6 weeks with 2-3 sessions per week.

The EEG interface device is the J&J Engineering I-330 C2. IASIS is delivered via the 4 EEG leads with respect to the Common Neck Reference. During each session, 2 electrodes are attached to the participant's left and right mastoids, while the remaining 2 electrodes are moved to various locations on the scalp to record EEG signals. All 4 electrodes are involved in applying weak electric current pulses back to the brain. The feedback signal consists 2 types of narrow pulse trains, both with 150mV in amplitude.

The Nexalin device, FDA clearance (501K=K024377, Classification: Stimulator, Cranial Electrotherapy: CFR 882. 5800: U.S. Patent #6904322B2), produces a waveform that provides tES to the brain delivered at a frequency of 4Hz, 40Hz, and 77.5Hz at 0 to 15mA peak current. Evidence shows this waveform, at these frequencies, results in improved clinical outcomes for anxiety and pain. We hypothesize that repeated TES treatments serve to stimulate long-term neurochemical changes.

Other Names:
  • LIP-tES intervention

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Change in Abnormal Magnetoencephalography (MEG) Slow-Waves (1-4 Hz) Activity
Time Frame: Baseline through end of treatment, an average of 6 weeks
We will develop a voxel-wise whole brain MEG source imaging approach for detecting abnormal Magnetoencephalography (MEG) slow-waves (1-4 Hz) in mTBI Veterans. The unit of the abnormal MEG source activity was measured in pico Ampere-meter (or pA-m which is 10^(-12) A-m). Natural logarithm transformation (i.e., e-based) was used. So, the unit of the MEG source imaging was log(pA-m). The range of the voxel-wise MEG source activity scale is 0-10. High amplitude of the MEG source activity suggests more serious injury. In the present study, we measured the Difference score in MEG exam pre- vs post the transcranial electrical stimulation (TES) treatment. Our primary measure is the reduction of the abnormal MEG source activity for slow waves (1-4 Hz), defined as the MEG activity at the pre-TES exam minus that at the post-TES exam. So, the higher this difference score is, the better outcomes due to the TES treatment in reducing the abnormal MEG signal.
Baseline through end of treatment, an average of 6 weeks
Rivermead Post Concussion Symptom Questionnaire
Time Frame: Baseline through end of treatment, an average of 6 weeks

The Rivermead Post Concussion Symptom Questionnaire (RPQ) total score was used to assess change in post-concussion symptoms due to TES. Our focus in this analysis was the difference score in RPQ total score pre- vs post-treatment measures.

The questionnaire has 16 items and uses scale of 0 - 4, with 0 as "not experienced at all" and 4 as "a severe problem." Value range: 0 - 64, where the higher scores mean a worse outcome.

For this measure, we focused on the difference score: total score from prior to treatment minus total score from end of treatment. Therefore, the higher the difference score, the more positive change was observed.

Baseline through end of treatment, an average of 6 weeks
Neurobehavioral Symptoms Inventory
Time Frame: Baseline through end of treatment, an average of 6 weeks

The Neurobehavioral Symptoms Inventory (NSI) total score was used to assess the changes of post-concussion symptoms due to TES. Our focus in this analysis was the difference score in NSI total score pre- vs post-treatment measures.

The NSI has 22 items and uses a response scale of 0 - 4, with 0 as "none" and 4 as "very severe." Value range: 0 - 88, where the higher scores mean a worse outcome/more severe post-concussive symptoms.

For this measure, we focused on the difference score: total score from prior to treatment minus total score from end of treatment. Therefore, the higher the difference score, the more positive change was observed.

Baseline through end of treatment, an average of 6 weeks

Secondary Outcome Measures

Outcome Measure
Measure Description
Time Frame
The McGill Pain Questionnaire (MGPQ)
Time Frame: Baseline through end of treatment, an average of 6 weeks

The McGill Pain Questionnaire (MGPQ) will evaluate the level of current pain, pain changes over time, and strength of pain, since pain is frequently co-morbid with mTBI.

Category scores range from 1-2 through 1-6. Minimum score = 0. Maximum score = 78. The higher the pain score, the greater the pain.

For this measure, we focused on the difference score: total score from prior to treatment minus total score from end of treatment. Therefore, the higher the difference score, the more positive change was observed.

Baseline through end of treatment, an average of 6 weeks
Clinician-Administered PTSD Scale (CAPS-5)
Time Frame: Up to 6 weeks

The CAPS-5 is a standard semi-structured interview used to assess PTSD diagnosis and severity. The primary traumatic event is elicited and will be used as the basis of assessing PTSD symptoms. The total symptom severity score is calculated by summing severity scores assessed in this 30-item questionnaire. PTSD diagnostic status will be assessed using the past month version of the CAPS-5A, in which total severity score of 33 or higher indicates full threshold PTSD. The past week version of the CAPS-5 will be given prior to treatment and at follow-up.

Severity scores range on a response scale of 0-5, 0=absent, 5=extreme/incapacitating. CAPS-55 summary scores range from 0 to 80, with the higher scores indicating greater severity of PTSD symptoms.

For this measure, we focused on the difference score: total score from prior to treatment minus total score from end of treatment. Therefore, the higher the difference score, the more positive change was observed.

Up to 6 weeks
Post-Concussion Check List (PCL-5)
Time Frame: Up to 6 weeks
PCL-5 is a 20-item self-report measure that assesses the 20 DSM-5 symptoms of PTSD. The PCL-5 uses a response scale of 0 - 4. 0 = "Not at all" to 4 = "Extremely." The total score can range from 0 - 80, with the higher the score corresponding to a higher level of distress to the very stressful experience. The difference between scores post-treatment and pre-treatment will analyzed in addition to the CAPS-5 (1 week version) outcomes. DSM-5 symptom cluster severity scores can be obtained by summing the scores for the items within a given cluster, i.e., cluster B (items 1-5), cluster C (items 6-7), cluster D (items 8-14), and cluster E (items 15-20); these subscale scores may be used in secondary analysis.
Up to 6 weeks
California Verbal Learning Test-2nd Edition - Free Recall Total Correct T-score
Time Frame: Up to 6 weeks

We will use T-scores from verbal learning and retrospective memory (California Verbal Learning Test-2nd Edition). Alternate CVLT forms were used during the post-treatment session.

T-score ranges from 5 to 95, where the higher the T-score, the better the outcome. The T-score indicates the number of standard deviations away from the mean, where 50 is the mean with a standard deviation of 10, and is age- and gender-corrected.

Analysis was based on the difference score between pre-treatment and post-treatment Free Recall Total Correct T-score. The lower the difference score, the more positive change was observed.

Up to 6 weeks
Wechsler Adult Intelligence Scale-4th Edition (WAIS-IV) Processing Speed Index
Time Frame: Up to 6 weeks

We will use the sum of scaled scores from the WAIS-IV Symbol Search and Coding subtests to attain the Processing Speed Index.

PSI ranged from 50 - 150, where the higher the score, the better the outcome. Analysis was based on the difference score between pre-treatment Processing Speed Index and post-treatment Processing Speed Index. The lower the difference score, the more positive change was observed.

Up to 6 weeks
Delis-Kaplan Executive Function System (DKEFS) - Trail Number/Letter Switching Scaled
Time Frame: Up to 6 weeks

Throughout the study, we used DKEFS Verbal Fluency, Trail-Making, and Color-Word Interference subtests to assess executive functioning.

Analysis was based on the DKEFS Trailmaking Number/Letter Switching scaled score. Scaled scores range from 1-19, where the higher the scaled score, the better the outcome.

Analysis was based on the difference score between pre-treatment scaled score and the post-treatment scaled score. The lower the difference score, the more positive change was observed.

Up to 6 weeks
Connors Continuous Performance Task II (CPT-II) - Inattention Omissions T-Score
Time Frame: Up to 6 weeks

The Connors Continuous Performance Task II (CPT-II) was included as a measure of attention and impulsivity.

In this measure, converted T-scores represent the score of the individual relative to the population, who are of the same gender and same age group. A T-score of 50 represents the average for the comparison group. T-score ranges from under 40 (very good performance) to 65+ (markedly atypical). The higher the scores, the worse the performance.

This analysis focused on the difference score between the Inattention Omissions T-score pre- and post-treatment. The higher the difference score, the more positive change was observed.

Up to 6 weeks
Barratt Impulsivity Scale
Time Frame: Up to 6 weeks

Impulsivity was also measured by Barratt Impulsivity Scale, a self-report questionnaire.

This scale contains 30 items, with total scores that range from 30 - 120. The higher the score, the worse the outcome.

Analysis was based on the difference score between pre- and post-treatment. The higher the difference score, the more positive change was observed.

Up to 6 weeks
Frontal Systems Behavior Scale
Time Frame: Baseline through end of treatment, an average of 6 weeks

Since frontal lobe areas are more prone to damage, the Frontal Systems Behavior Scale (FrSBe) will measure behavioral dysfunction associated with frontal subcortical impairment.

FrSBe is a 46-item rating scale with three subscales: Apathy (14 items), Disinhibition (15 items), and Executive Function (17 items). Items are rated in a 5-point scale, where higher scores mean a worse outcome. The raw scores of these subscales were converted to T-scores, with range of 9 - >/= 140, where T-scores greater than 65 are considered clinically significant.

For this measure, we focused on the difference score of the total T-score prior to treatment minus total score from end of treatment. Therefore, the higher the difference score, the more positive change was observed.

Baseline through end of treatment, an average of 6 weeks

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Investigators

  • Principal Investigator: Mingxiong Huang, PhD, VA San Diego Healthcare System, San Diego, CA

Publications and helpful links

The person responsible for entering information about the study voluntarily provides these publications. These may be about anything related to the study.

General Publications

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (Actual)

February 1, 2017

Primary Completion (Actual)

September 30, 2022

Study Completion (Actual)

September 30, 2022

Study Registration Dates

First Submitted

July 24, 2017

First Submitted That Met QC Criteria

August 4, 2017

First Posted (Actual)

August 9, 2017

Study Record Updates

Last Update Posted (Estimated)

January 18, 2024

Last Update Submitted That Met QC Criteria

December 21, 2023

Last Verified

December 1, 2023

More Information

Terms related to this study

Plan for Individual participant data (IPD)

Plan to Share Individual Participant Data (IPD)?

NO

IPD Plan Description

One or more data sets without personal identifiers will be generated during the data analysis phase of this study. Publications from this research will be made available to the public through the National Library of Medicine PubMed Central website within one year after the date of publication. The data sets will include all data underlying any publications generated by this study and therefore, these will be sufficient to reproduce or verify any published findings.

Requests for access to final data sets must be made in writing signed by a requestor from the United States and include an email address for delivery and an assurance that the recipient will not attempt to identify or re-identify any individual. The request should reference the publication underlying the request. Requests may be made to the PI/lead point-of-contact for the publication. If the investigator leaves the VASDHS the requests may be sent to the Associate Chief of Staff for Research.

Drug and device information, study documents

Studies a U.S. FDA-regulated drug product

No

Studies a U.S. FDA-regulated device product

Yes

product manufactured in and exported from the U.S.

No

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Post-traumatic Stress Disorder

Clinical Trials on TES

3
Subscribe