Characterization of the DELPhI System in Assessing Brain's Functionality in Different Neurological Disorders

February 15, 2022 updated by: QuantalX Neuroscience

Characterization of the DELPhI System in Assessing Brain's Functionality in Different Neurological Disorders-A Pilot Study

We use Transcranial magnetic stimulation (TMS), combined with simultaneous registration of electroencephalograph (EEG),for examining human cortical functionality. TMS-EEG is a noninvasive brain stimulation method that allows to study human cortical function in vivo. EEG provides an opportunity to directly measure the cerebral response to TMS, measuring the cortical TMS Evoked potential (TEP). In this study we measure TEPs, in a wide variety of neurological conditions and healthy as a measure of cerebral reactivity across wide areas of neocortex.

Study Overview

Detailed Description

Brain network plasticity evaluation has been shown extensively essential for understanding and monitoring of brain functional changes and brain disorders. However, existing clinically used imaging methods are unable to robustly indicate plasticity or plasticity changes. Therefore, there is a great need for developing such an imaging tool for brain functional evaluation. In basic neuroscience research plasticity evaluation is performed by conducting electrophysiological measurements in vivo. By using EEG - combined with TMS stimulation this methodology can be transformed into clinically used plasticity and connectivity assessment for evaluation of functional brain status. This study may thus introduce a novel, non-invasive and efficient method for brain functional imaging. DELPhI evaluation will offer a true multimodality imaging by combining EEG and TMS that allows a quantative objective and direct identification of disease assessment. There is a real unmet need for an accurate and objective evaluation that together with the common clinical practice will provide neurologists and psychiatrists a more definite and personalized treatment prescription.

Studies integrating TMS with EEG (TMS-EEG) have shown that TMS produces waves of activity that reverberate throughout the cortex and that are reproducible and reliable thus providing direct information about cortical excitability and connectivity with excellent time resolution. By evaluating the propagation of evoked activity in different behavioral states and in different tasks, TMS-EEG has been used to causally probe the dynamic effective connectivity of human brain networks. When applying the TMS coil above the motor cortex, a cascade effect called the motor-evoked potential (MEP), is initiated. The MEP is measurable at peripheral muscles. The Motor cortex is a brain structure located between the frontal and parietal cortices. Pyramidal neurons in the motor cortex, upper motor neuron going through the brain stem, send signals to lower motor neuron in the spinal cord which stimulate muscle fibers. TMS stimulus to the Motor cortex evokes a brain response which propagates to different brain regions in addition to the peripheral limb muscles [20]. An important feature of TEP topography is that even though only one cortical hemisphere is stimulated, bihemispheric EEG evoked responses are evoked with different features. TMS-evoked activity propagates from the stimulation site ipsilaterally via association fibers and contralaterally via transcallosal fibers and to subcortical structures via projection fibers. These TMS-evoked cortical potentials (TEPs) last for up to 300 ms in both the vicinity of the stimulation as well as in remote interconnected brain areas reflect long term changes in cortical network excitation-inhibition balance refeed to as brain network plasticity. A single TMS pulse delivered over the primary motor cortex (M1) results in a sequence of positive and negative EEG peaks at specific latencies (i.e., P25, N45, P70, N100, and P180).

In this study a wide population of subjects will be recruited. this population will include different neurological conditions and healthy subjects, arriving to the Hyperbaric center at Asaf-Harophe hospital. Each subject will be tested once before treatment initiation and subsequent tests will be performed also after treatment termination or at follow up time points. Each evaluation will last up to 90 minutes and will include affixed stimulation protocol ranging Up to 1000 TMS pulses, with intensities between 60-130% of motor threshold (MT). Inter-stimuli frequency will change from 0.01 up to 20 Hz.Existing clinical data such as MRI scans, neurocognitive assessments and clinical evaluations will be collected out of patient files. EEG data recorded will be analyzed and corrolations to the clinical data will be tested.

Study Type

Observational

Enrollment (Actual)

193

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Locations

      • Rishon LeZion, Israel, 70300
        • Asaf-Harophe

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

18 years and older (ADULT, OLDER_ADULT)

Accepts Healthy Volunteers

Yes

Genders Eligible for Study

All

Sampling Method

Probability Sample

Study Population

Patients arriving to the Sagol center for Hyperbaric medicine at Assaf harofe Medical center, undergoing a series of hyperbaric treatment sessions and will be found compatible to inclusion/exclusion criteria.

Description

Inclusion Criteria:

  1. Man and woman at the ages of ≥18 years.
  2. Designated to perform a neurocognitive evaluation at the Sagol center for hyperbaric medicine and research, at Assaf-Harofe Medical center.

Exclusion Criteria:

  1. Under 18 years of age.
  2. With a skin condition on the scalp preventing the placement of EEG cap.
  3. Pregnant or breastfeeding woman.
  4. Unable to give an informed consent.

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

Cohorts and Interventions

Group / Cohort
Intervention / Treatment
Stroke
Diagnostic Test: DELPhI (TMS-EEG analysis)
We perform an evaluation not an intervention. the DELPhI evaluation comprises of an automated analysis to EEG data recorded during TMS (Transcranial Magnetic Stimulation) to the M1L (Primary motor cortex).
TBI
Diagnostic Test: DELPhI (TMS-EEG analysis)
We perform an evaluation not an intervention. the DELPhI evaluation comprises of an automated analysis to EEG data recorded during TMS (Transcranial Magnetic Stimulation) to the M1L (Primary motor cortex).
ABD
Diagnostic Test: DELPhI (TMS-EEG analysis)
We perform an evaluation not an intervention. the DELPhI evaluation comprises of an automated analysis to EEG data recorded during TMS (Transcranial Magnetic Stimulation) to the M1L (Primary motor cortex).
Fibromyalgia
Diagnostic Test: DELPhI (TMS-EEG analysis)
We perform an evaluation not an intervention. the DELPhI evaluation comprises of an automated analysis to EEG data recorded during TMS (Transcranial Magnetic Stimulation) to the M1L (Primary motor cortex).
PDD
Diagnostic Test: DELPhI (TMS-EEG analysis)
We perform an evaluation not an intervention. the DELPhI evaluation comprises of an automated analysis to EEG data recorded during TMS (Transcranial Magnetic Stimulation) to the M1L (Primary motor cortex).
ADHD
Diagnostic Test: DELPhI (TMS-EEG analysis)
We perform an evaluation not an intervention. the DELPhI evaluation comprises of an automated analysis to EEG data recorded during TMS (Transcranial Magnetic Stimulation) to the M1L (Primary motor cortex).
MCI
Diagnostic Test: DELPhI (TMS-EEG analysis)
We perform an evaluation not an intervention. the DELPhI evaluation comprises of an automated analysis to EEG data recorded during TMS (Transcranial Magnetic Stimulation) to the M1L (Primary motor cortex).
Dementia
Diagnostic Test: DELPhI (TMS-EEG analysis)
We perform an evaluation not an intervention. the DELPhI evaluation comprises of an automated analysis to EEG data recorded during TMS (Transcranial Magnetic Stimulation) to the M1L (Primary motor cortex).
Healthy
Diagnostic Test: DELPhI (TMS-EEG analysis)
We perform an evaluation not an intervention. the DELPhI evaluation comprises of an automated analysis to EEG data recorded during TMS (Transcranial Magnetic Stimulation) to the M1L (Primary motor cortex).
Cognitive impairment
Diagnostic Test: DELPhI (TMS-EEG analysis)
We perform an evaluation not an intervention. the DELPhI evaluation comprises of an automated analysis to EEG data recorded during TMS (Transcranial Magnetic Stimulation) to the M1L (Primary motor cortex).

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Correlation between DELPhI's parameters to MRI scans
Time Frame: through study completion, an average of 1 year
Correlation between DELPhI parameters to cognitive assessment by MRI/CT and computerized cognitive evaluation (Mindstreems cognitive battery test).
through study completion, an average of 1 year
Correlation between DELPhI's parameters to cognitive assessment
Time Frame: through study completion, an average of 1 year
Correlation between DELPhI parameters to MRI/CT and computerized cognitive evaluation (Mindstreems cognitive battery test).
through study completion, an average of 1 year

Secondary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Cluster TMS Evoked Responses' (TEPs') features such as amplitude, latency, Area under the curve and slopes.
Time Frame: through study completion, an average of 1 year
Calculating potential clusters based on TEP's features at different stimulation conditions. Features such as amplitude, area under the curve, slope and latency.
through study completion, an average of 1 year

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (ACTUAL)

April 23, 2018

Primary Completion (ACTUAL)

February 14, 2022

Study Completion (ACTUAL)

February 14, 2022

Study Registration Dates

First Submitted

November 1, 2018

First Submitted That Met QC Criteria

February 5, 2019

First Posted (ACTUAL)

February 6, 2019

Study Record Updates

Last Update Posted (ACTUAL)

February 16, 2022

Last Update Submitted That Met QC Criteria

February 15, 2022

Last Verified

February 1, 2019

More Information

Terms related to this study

Drug and device information, study documents

Studies a U.S. FDA-regulated device product

Yes

product manufactured in and exported from the U.S.

No

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Stroke

Clinical Trials on DELPhI (TMS-EEG analysis)

3
Subscribe