Epileptiform EEG Patterns During Induction of General Anaesthesia With Sevoflurane Compared to Those With Propofol (EEG)

July 7, 2017 updated by: Michał Stasiowski, Medical University of Silesia

Influence of Volatile Induction of General Anaesthesia With Sevoflurane Using Two Different Techniques and Intravenous Induction Using Propofol on the Epileptiform Electroencephalograph Patterns:

The aim of the study was to assess the influence of volatile induction of general anaesthesia with sevoflurane using two different techniques and intravenous anaesthesia with propofol on the possible presence of epileptiform electroencephalograph patterns during the induction of general anaesthesia. We aimed to verify whether presence of epileptiform patterns (EPs) defined as polispikes (PS), rhytmic polispikes (RPS), periodic epileptiform discharges (PED) on Electroencephalographs (EEGs) influence the behaviour of values of the Bispectral Index (BIS), State (SE) and Response (RE), A-line Auto Regressive Index (AAI) derived from middle latency auditory evoked potentials (MLAEP) during the induction of general anaesthesia using abovementioned techniques and such variations may be useful in detection of presence of EPs.

Study Overview

Detailed Description

Both sevoflurane and propofol are considered safe and potent anaesthetics and are used for induction or coinduction of general anaesthesia. During all stages of general anaesthesia, both agents may induce seizure-like movements or seizures (clinically manifested events and confirming electroencephalographic pattern) accompanied by haemodynamic instability. Their proconvulsant activity should be verified and assessed.

The aim of the additional analysis was to identify whether observance of the variations of values displayed on different depth of anaesthesia monitors (DOA monitors) reliably reflect the actual depth of general anaesthesia during presence of epileptiform patterns (EPs) in EEGs during VIGA with sevoflurane using two different techniques and intravenous induction of general anaesthesia with single dose of propofol.

We performed standard 30-minute initial EEG recordings for all patients participating in the study to exclude any pre-existing epileptic EEG patterns. We took the initial EEG recordings in a dark quiet room for 5 minutes as a baseline, followed by three eye opening and closing sequences of 10 seconds each and photostimulation lasting 10 minutes (flash stimuli at frequencies of 3/6/9/12 Hz- alpha; 15/18/21/24 Hz- beta). Then we obtained another baseline reading and we asked the patients to achieve a state of hyperventilation by taking 20 forceful breathes per minute for five minutes. Finally, we obtained another baseline reading.

Throughout the induction of anaesthesia and the surgery, standard monitoring procedures were utilised to pay close attention to the vital parameters such as non-invasive arterial pressure (BP), heart rate (HR), standard electrocardiography (ECG) II, arterial oxygen saturation (SaO2), fraction of inspired oxygen in the gas mixture (FiO2), facial electromyography (fEMG), fraction of inspired sevoflurane (FiAA), fraction of expired sevoflurane (FeAA), exhaled carbon dioxide concentration (etCO2), minimal alveolar concentration of sevoflurane (MAC).

Study Type

Interventional

Enrollment (Actual)

60

Phase

  • Not Applicable

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Locations

    • Silesia
      • Sosnowiec, Silesia, Poland, 41-200
        • Medical University of Silesia

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

18 years to 70 years (Adult, Older Adult)

Accepts Healthy Volunteers

No

Description

Inclusion Criteria:

  • an American Society of Anaesthesiologists (ASA) score I-II
  • written informed consent to undergo general anaesthesia

Exclusion Criteria:

- history of epilepsy, medical treatment that might interfere with the EEG (e.g., tranquilizers, antiepileptic drugs), pregnancy, drug or alcohol abuse, history of neurological disease or a neurosurgical operation that would impair EEG or BIS monitoring, history of pulmonary disease, or the presence of signs predicting difficult mask ventilation or intubation. any pre-existing epileptic EEG patterns in standard 30-minute initial EEG recordings performed in all the patients participating in the study.

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: Diagnostic
  • Allocation: Randomized
  • Interventional Model: Parallel Assignment
  • Masking: Single

Arms and Interventions

Participant Group / Arm
Intervention / Treatment
Experimental: sevoflurane - increasing concentrations
The patient was breathing spontaneously via the face mask and the sevoflurane concentration in the inhaled gas was doubled every 10 breaths starting from 0.3 vol. % in a sequence 0.3-0.6-1.2-2.4-4.8-8 vol. % until a minimal alveolar concentration (MAC) of 2 was obtained in the exhalation gas. Electroencephalography (EEG), bispectral index (BIS), response and state entropy (RE and SE), middle latency auditory evoked potentials (MLAEP) were monitored.
Four EEG channels were recorded using electrode positions as defined in the International 10-20 System with Ag/AgCl2 cup electrodes (Spes Medica) attached to the scalp with EC2 Electrode Cream (Grass Technologies). The impedance was set below 1 k, and the electrodes were attached to module S/5 E-EEG of the anaesthetic monitor S/5 (GE Healthcare).
The BIS score was derived from a sensor (Aspect Medical Systems) positioned diagonally on the patients' foreheads according to producer's instructions.
The respone and state entropy (RE and SE) score was derived from a sensor (Aspect Medical Systems) positioned diagonally on the patients' foreheads according to producer's instructions.
value of A-line Auto Regressive Index (AAI) derived from middle latency auditory evoked potentials (MLAEP) (A-line Monitor, Danmeter A/S, Odense, Denmark) was observed which measures the central nervous system responsiveness to a specific auditory stimulus
Experimental: sevoflurane - vital capacity
The anaesthetic circuit was prefilled with 8% sevoflurane. The patients were asked to exhale to the residual volume. Then the patients were explained to perform a vital-capacity breath with a face mask applied tightly to their faces. Then the patients were encouraged to hold their breaths as long as possible. Thereafter, the patients were asked to breathe spontaneously. Electroencephalography (EEG), bispectral index (BIS), response and state entropy (RE and SE), middle latency auditory evoked potentials (MLAEP) were monitored.
Four EEG channels were recorded using electrode positions as defined in the International 10-20 System with Ag/AgCl2 cup electrodes (Spes Medica) attached to the scalp with EC2 Electrode Cream (Grass Technologies). The impedance was set below 1 k, and the electrodes were attached to module S/5 E-EEG of the anaesthetic monitor S/5 (GE Healthcare).
The BIS score was derived from a sensor (Aspect Medical Systems) positioned diagonally on the patients' foreheads according to producer's instructions.
The respone and state entropy (RE and SE) score was derived from a sensor (Aspect Medical Systems) positioned diagonally on the patients' foreheads according to producer's instructions.
value of A-line Auto Regressive Index (AAI) derived from middle latency auditory evoked potentials (MLAEP) (A-line Monitor, Danmeter A/S, Odense, Denmark) was observed which measures the central nervous system responsiveness to a specific auditory stimulus
Experimental: propofol - intravenous induction
the patients were preoxygenated with 100% oxygen following which propofol was intravenously administered at a single dose of 2.5 mg/kg of body weight, after which it was infused with an infusion speed of 4 mg/kg body weight/h. Electroencephalography (EEG), bispectral index (BIS), response and state entropy (RE and SE), middle latency auditory evoked potentials (MLAEP) were monitored.
Four EEG channels were recorded using electrode positions as defined in the International 10-20 System with Ag/AgCl2 cup electrodes (Spes Medica) attached to the scalp with EC2 Electrode Cream (Grass Technologies). The impedance was set below 1 k, and the electrodes were attached to module S/5 E-EEG of the anaesthetic monitor S/5 (GE Healthcare).
The BIS score was derived from a sensor (Aspect Medical Systems) positioned diagonally on the patients' foreheads according to producer's instructions.
The respone and state entropy (RE and SE) score was derived from a sensor (Aspect Medical Systems) positioned diagonally on the patients' foreheads according to producer's instructions.

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
presence of epileptiform patterns in patients EEGs
Time Frame: intraoperative
the main objective is to measure the influence of volatile induction of general anaesthesia with sevoflurane using two different techniques and intravenous anaesthesia with propofol on the presence of epileptiform electroencephalograph patterns during the induction of general anaesthesia.
intraoperative

Secondary Outcome Measures

Outcome Measure
Measure Description
Time Frame
observance of BIS score behaviour during presence of epileptiform patterns in patients EEGs
Time Frame: intraoperative
the objective is to measure the BIS index variations during presence of EPs in patients' EEGs during volatile induction of general anaesthesia (VIGA) with sevoflurane using two different anaesthetic regimens compared to intravenous induction of general anaesthesia using single dose of propofol.
intraoperative
observance of values of state and response entropy behaviour during presence of epileptiform patterns in patients
Time Frame: intraoperative
the objective is to measure values of state and response entropy index variations during presence of EPs in patients' EEGs during volatile induction of general anaesthesia (VIGA) with sevoflurane using two different anaesthetic regimens compared to intravenous induction of general anaesthesia using single dose of propofol.
intraoperative
observance of values of middle latency auditory evoked potentials behaviour during presence of epileptiform patterns in patients
Time Frame: intraoperative
the objective is to measure values of middle latency auditory evoked potentials during presence of EPs in patients' EEGs during volatile induction of general anaesthesia (VIGA) with sevoflurane using two different anaesthetic regimens compared to intravenous induction of general anaesthesia using single dose of propofol.
intraoperative

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Investigators

  • Principal Investigator: Przemysław Jałowiecki, Silesian University of Medicine

Publications and helpful links

The person responsible for entering information about the study voluntarily provides these publications. These may be about anything related to the study.

General Publications

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (Actual)

January 1, 2007

Primary Completion (Actual)

December 13, 2008

Study Completion (Actual)

December 13, 2008

Study Registration Dates

First Submitted

July 2, 2017

First Submitted That Met QC Criteria

July 5, 2017

First Posted (Actual)

July 6, 2017

Study Record Updates

Last Update Posted (Actual)

July 11, 2017

Last Update Submitted That Met QC Criteria

July 7, 2017

Last Verified

July 1, 2017

More Information

Terms related to this study

Plan for Individual participant data (IPD)

Plan to Share Individual Participant Data (IPD)?

Undecided

IPD Plan Description

articles in Clinical Monitoring and Computing in 2017, case reports

Drug and device information, study documents

Studies a U.S. FDA-regulated drug product

No

Studies a U.S. FDA-regulated device product

No

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Seizures

Clinical Trials on electroencephalography (EEG)

3
Subscribe