Ataxia and Exercise Disease Using MRI and Gait Analysis

October 27, 2021 updated by: Scott Barbuto, Columbia University

Effects of Aerobic Exercise Verse Balance Training on Degenerative Cerebellar Disease

The first aim is to show balance training improves DCD individual's ability to compensate for their activity limitations, but does not impact disease progression.

The second aim is to demonstrate aerobic exercise improves balance and gait in DCD persons by affecting brain processes and slowing cerebellar atrophy.

Study Overview

Detailed Description

Individuals with degenerative cerebellar disease (DCD) exhibit gradual loss of coordination resulting in impaired balance, gait deviations, and severe, progressive disability. With no available disease-modifying medications, balance training is the primary treatment option to improve motor skills and functional performance. There is no evidence, however, that balance training impacts DCD at the tissue level.

Aerobic training, on the other hand, may modify DCD progression as evident from animal data. Compared to sedentary controls, aerobically trained DCD rats have enhanced lifespan, motor function, and cerebellar Purkinje cell survival. Numerous animal studies also document that aerobic training has a direct, favorable effect on the brain that includes production of neurotrophic hormones, enhancement of neuroplasticity mechanisms, and protection from neurotoxins.

The effects of aerobic training in humans with DCD are relatively unknown, despite these encouraging animal data. A single study to date has evaluated the benefits of aerobic exercise on DCD in humans, and this was a secondary outcome of the study. Although participants performed limited aerobic training during the study, modest functional benefits were still detected.

The main objective of this project will be to compare the benefits of aerobic versus balance training in DCD. We hypothesize that both aerobic and balance training will improve function in DCD subjects, but that the mechanisms in which these improvements occur differ. 1) Balance training improves DCD individual's ability to compensate for their activity limitations, but does not impact disease progression. 2) Aerobic exercise improves balance and gait in DCD persons by affecting brain processes and slowing cerebellar atrophy.

Study Type

Interventional

Enrollment (Actual)

36

Phase

  • Not Applicable

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Locations

    • New York
      • New York, New York, United States, 10035
        • Columbia University/New York Presbyterian

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

18 years and older (Adult, Older Adult)

Accepts Healthy Volunteers

No

Genders Eligible for Study

All

Description

Inclusion Criteria:

  • Diagnosed with spinocerebellar ataxia
  • Cerebellar atrophy on MRI
  • Prevalence of ataxia on clinical exam
  • Ability to safely ride a stationary exercise bike

Exclusion Criteria:

  • Other neurologic conditions
  • Heart disease
  • Cognitive impairment
  • Medical instability

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: Treatment
  • Allocation: Randomized
  • Interventional Model: Parallel Assignment
  • Masking: Single

Arms and Interventions

Participant Group / Arm
Intervention / Treatment
Experimental: Aerobic Training
Participants will be given a stationary exercise bike for home use. They will be instructed to use the exercise bike five times a week for thirty-minute sessions. The exercise intensity prescription will be based on the subject's VO2max determined on pre-test day. The exercise program will start at 60% of intensity per session, and then will be increased by steps of 5% intensity every 2 sessions until participants reach 30 minutes of training at 80% intensity. Participants will be contacted weekly by e-mail or phone to answer any questions about the exercise protocol and will be instructed to log each training session. Subjects will record duration of exercise, perceived exertion, average heart rate, maximum heart rate, and distance.
Aerobic training on stationary bicycle for 30 minutes a day, 5 days a week for 6 months
Active Comparator: Balance Training
A physical therapist will tailor a home balance training program for each participant based on pre-training capabilities. Subjects will be asked to perform exercises five times a week for thirty-minute sessions. Both dynamic and static exercises will be performed in sitting and standing positions. Exercises will start with stabilizing in a challenging static position and progress to dynamic arm and leg movements in the same or modified position. Participants will be contacted weekly by e-mail or phone to answer any questions about the exercise protocol and will be required to log their exercise effort in terms of frequency and level of balance challenge. Individuals will be instructed to perform more difficult exercises if balance challenge scores are low.
Standard of care

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Change in SARA scores
Time Frame: 6 months
Ataxia severity will be measured using the Scale for the Assessment and Rating of Ataxia (SARA).17 SARA evaluates the degree of ataxia by measuring gait, stance, sitting balance, speech, finger-chase test, nose-finger test, fast alternating movements, and heel-shin test.
6 months

Secondary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Change in gait parameters
Time Frame: 6 months
For the walking assessment, participants will walk as fast as possible on a 10-meter runway six times, and we will average the times of trials 3-6. We will also collect marker position data from infrared emitting diodes placed bilaterally at the first and fifth metatarsal heads, heels, medial and lateral malleoli, medial and lateral condyles of the knee, head of the fibula, and anterior and posterior superior iliac crests pelvic crests using a three-dimensional Vicon motion capture system (Vicon, Denver, CO). Custom Nexus and Bodybuilder software will be used to calculate joint position and determine the following walking parameters: stride length, stride length variability, percent time in double limb support, and degree of pelvic rotation and tilt.
6 months
Change in cerebellar volume
Time Frame: 6 months
Cranial MRI will be performed in all participants using a 3-T scanner. Using each individual's T1-weighted image, structural imaging measures of cerebellar brain volume will be derived using the FreeSurfer software package (http://surfer.nmr.mgh.harvard.edu/). FreeSurfer will automatically assign a neuroanatomic label to each voxel. From this labeling, a set of volumetric regions of interest is defined. The calculated volume within the cerebellar region is adjusted for variations in individual's intracranial brain volume (ICV) which is measured using BrainWash (an automatic multi-atlas skull-striping software package). We will process the longitudinal T1-weighted images using FreeSurfer longitudinal pipeline, recently implemented to detect small or subtle changes over time.
6 months

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Investigators

  • Principal Investigator: Scott Barbuto, MD, PhD, Columbia University

Publications and helpful links

The person responsible for entering information about the study voluntarily provides these publications. These may be about anything related to the study.

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (Actual)

January 13, 2020

Primary Completion (Actual)

September 1, 2021

Study Completion (Actual)

September 1, 2021

Study Registration Dates

First Submitted

October 8, 2018

First Submitted That Met QC Criteria

October 8, 2018

First Posted (Actual)

October 10, 2018

Study Record Updates

Last Update Posted (Actual)

November 4, 2021

Last Update Submitted That Met QC Criteria

October 27, 2021

Last Verified

October 1, 2021

More Information

Terms related to this study

Plan for Individual participant data (IPD)

Plan to Share Individual Participant Data (IPD)?

No

Drug and device information, study documents

Studies a U.S. FDA-regulated drug product

No

Studies a U.S. FDA-regulated device product

No

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Ataxia

  • Cadent Therapeutics
    Withdrawn
    Spinocerebellar Ataxia Type 3 | Spinocerebellar Ataxias | Spinocerebellar Ataxia Type 1 | Spinocerebellar Ataxia Type 2 | Spinocerebellar Ataxia Type 6 | Spinocerebellar Ataxia Type 10 | Spinocerebellar Ataxia Type 7 | Spinocerebellar Ataxia Type 8 | Spinocerebellar Ataxia Type 17 | ARCA1 - Autosomal Recessive...
    United States
  • Biohaven Pharmaceuticals, Inc.
    Active, not recruiting
    Spinocerebellar Ataxia Type 3 | Spinocerebellar Ataxias | Spinocerebellar Ataxia Type 1 | Spinocerebellar Ataxia Type 2 | Spinocerebellar Ataxia Type 6 | Spinocerebellar Ataxia Type 10 | Spinocerebellar Ataxia Type 7 | Spinocerebellar Ataxia Type 8
    United States, China
  • Assistance Publique - Hôpitaux de Paris
    Completed
    Spinocerebellar Ataxia Type 1 | Spinocerebellar Ataxia Type 2 | Spinocerebellar Ataxia, Autosomal Recessive 3 | Episodic Ataxia, Type 7
    France
  • University of Chicago
    Pfizer; Biogen; APDM Wearable Technologies
    Active, not recruiting
    Spinocerebellar Ataxia Type 3 | Friedreich Ataxia | Spinocerebellar Ataxia Type 1 | Spinocerebellar Ataxia Type 2 | Spinocerebellar Ataxia Type 6
    United States
  • Biohaven Pharmaceuticals, Inc.
    Active, not recruiting
    Spinocerebellar Ataxias | Spinocerebellar Ataxia Genotype Type 1 | Spinocerebellar Ataxia Genotype Type 2 | Spinocerebellar Ataxia Genotype Type 3 | Spinocerebellar Ataxia Genotype Type 6 | Spinocerebellar Ataxia Genotype Type 7 | Spinocerebellar Ataxia Genotype Type 8 | Spinocerebellar Ataxia Genotype...
    United States
  • University of California, Los Angeles
    Rare Diseases Clinical Research Network; Office of Rare Diseases (ORD)
    Completed
    Cerebellar Diseases | Episodic Ataxia Syndrome
    United States, Canada, United Kingdom
  • Teachers College, Columbia University
    Active, not recruiting
    Spinocerebellar Ataxia Type 3 | Spinocerebellar Ataxia Type 1 | Spinocerebellar Ataxia Type 2 | Spinocerebellar Ataxia Type 6 | Spinocerebellar Ataxia Type 7
    United States
  • Sclnow Biotechnology Co., Ltd.
    Not yet recruiting
    Spinocerebellar Ataxia Type 3 | Spinocerebellar Ataxia Type 1 | Spinocerebellar Ataxia Type 2 | Spinocerebellar Ataxia Type 6
  • University of California, Los Angeles
    Active, not recruiting
    Spinocerebellar Ataxias | Spinocerebellar Ataxia 3 | Spinocerebellar Ataxia Type 1 | Spinocerebellar Ataxia Type 2 | Spinocerebellar Ataxia Type 6 | MSA-C
    United States
  • Seoul National University Hospital
    Completed
    Ataxia, Cerebellar | Ataxia, Progressive
    Korea, Republic of

Clinical Trials on Aerobic Training

3
Subscribe