OCTA Insights in CNVM, Morphological Characteristics and Correlation With Structural OCT.

September 14, 2021 updated by: Reham Mahmoud A. Abdallah, Assiut University

Optical Coherence Tomography Angiography Insights in Choroidal Neovascular Membrane, Morphological Characteristics and Correlation With Structural Optical Coherence Tomography.

To suggest a novel classification of choroidal neovascular membrane based on optical coherence tomography angiography and to correlate morphological characteristics based on optical coherence tomography with clinical criteria of disease activity.

Study Overview

Status

Not yet recruiting

Detailed Description

Choroidal neovascularization is an important path biologic mechanism encountered in a variety of chorio-retinal diseases. Choroidal neo-vascularization represents new blood vessel growth from the choroid that extends into the sub-retinal pigment epithelium, or sub-retinal space, or a combination of both. There is some evidence that the clinical findings and angiographic appearance of choroidal neo-vascular membrane correlate with the growth pattern. Choroidal neo- vascularization dynamic evolution includes initiation, inflammatory active, and inflammatory inactive stages.

It can be assumed that there is a risk of choroidal neo-vascular membrane development in any case where the integrity of Bruch's membrane or the retinal pigment epithelium is impaired. The most common cause of choroidal neo-vascular membrane is indisputably age-related macular degeneration, but choroidal neo-vascular membrane may also occur secondary to many other etiologies, such as pathological myopia, angioid streaks, uveitis, infection, and traumatic Bruch's membrane-retinal pigment epithelium defects, and idiopathic cases where no etiology can be detected.

Growth pattern:

Although no two choroidal neo-vascular membrane growth patterns are exactly alike, choroidal neo-vascular membrane grows in the plane between the retinal pigment epithelium and the Bruch membrane, between the retina and retinal pigment epithelium, or a combination of both (combined pattern). There is a retinal vascular contribution in approximately 6% of choroidal neo-vascular membrane . The new blood vessels are capillary-like and, with time, become arterial and venular.

Imaging modalities:

Fundus fluorescein angiography with dye injection is considered the gold standard for detecting choroidal neo-vascular membrane and assessing its activity. However, Fundus fluorescein angiography is time consuming and invasive, resulting in varying degrees of patient discomfort, including anaphylactic reactions that can occur during and/or after fundus fluorescein angiography. A total of 4.8% patients were reported to have experienced adverse events after the fundus fluorescein angiography, including nausea (2.9%), vomiting (1.2%), and flushing/itching (0.5%).

Optical coherence tomography has become an important non-invasive and quick method to diagnose and monitor disease activity during anti- vascular endothelial growth factor treatment by revealing the fate of active choroidal neo-vascular membrane such as intra- and sub-retinal fluid accumulation and retinal thickening. On optical coherence tomography CNV appears as sub-retinal or sub-retinal pigment epithelium hyper reflective material with limited differentiation between unreactive fibrous and/or active neo-vascular tissue. Retreatment decisions are mainly based on assessment of extravascular fluid and not on an analysis of neo-vascular activity.

Optical coherence tomography angiography offers a breakthrough in diagnostic imaging by allowing non-invasive visualization of retinal and choroidal vascular flow via motion-contrast imaging. Optical coherence tomography angiography provides depth-resolved visualization of the retinal and choroidal vasculature without the need for dye injection. The technology has been applied for the diagnosis and monitoring of choroidal neo-vascular membrane in age-related macular degeneration. Optical coherence tomography angiography has described features of myopic choroidal neo-vascular membrane and demonstrated its high sensitivity and specificity for neo-vascular detection. Optical coherence tomography angiography is a new noninvasive imaging modality, based on high-frequency scanning for the detection of blood cell movement. This imaging modality takes advantage of the optical coherence tomography capacity to generate images by measuring the amplitude and delay of reflected and backscattered light. Multiple repeated scans are carried out in the same retinal location, and the images obtained are compared to identify the signal differences between two consecutive scans. Because the retina is a static structure, it is reasonable to suppose that these changes are imputable to the blood flow. This precise and non-invasive imaging modality offers novel diagnostic opportunities to fill the current gap between invasive vascular and non- invasive structural imaging.

Study Type

Observational

Enrollment (Anticipated)

80

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Contact

Study Contact Backup

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

  • ADULT
  • OLDER_ADULT
  • CHILD

Accepts Healthy Volunteers

No

Genders Eligible for Study

All

Sampling Method

Non-Probability Sample

Study Population

All patients with choroidal neovascular membrane, naive or previously treated.

Description

Inclusion Criteria:

  • Patients with all types of CNV, previously treated or naïve.

Exclusion Criteria:

  • The presence of prominent media opacity.
  • Significant cataract.
  • Poor fixation.
  • Any other factor that interferes with obtaining good-quality OCT/OCTA images.

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Morphological characters of choroidal neovascular membrane
Time Frame: One year
To describe morphological criteria of choroidal neovascular membrane using optical coherence tomography angiography (OCTA).
One year

Secondary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Correlation between morphological characters of choroidal neovascular membrane and disease activity
Time Frame: One year
To correlate the morphological characters of choroidal neovascular membrane and clinical criteria of disease activity
One year

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Investigators

  • Study Chair: Samir Y Saleh, PhD, Assiut University

Publications and helpful links

The person responsible for entering information about the study voluntarily provides these publications. These may be about anything related to the study.

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (ANTICIPATED)

October 1, 2021

Primary Completion (ANTICIPATED)

October 1, 2022

Study Completion (ANTICIPATED)

December 1, 2022

Study Registration Dates

First Submitted

September 12, 2021

First Submitted That Met QC Criteria

September 14, 2021

First Posted (ACTUAL)

September 24, 2021

Study Record Updates

Last Update Posted (ACTUAL)

September 24, 2021

Last Update Submitted That Met QC Criteria

September 14, 2021

Last Verified

September 1, 2021

More Information

Terms related to this study

Plan for Individual participant data (IPD)

Plan to Share Individual Participant Data (IPD)?

NO

Drug and device information, study documents

Studies a U.S. FDA-regulated drug product

No

Studies a U.S. FDA-regulated device product

No

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Choroidal Neovascularization

3
Subscribe