Metformin, Muscle Energetics, and Vascular Function in Older Adults With Peripheral Artery Disease

September 18, 2018 updated by: Mark Alan Creager, MD, Brigham and Women's Hospital

The investigators are doing this research study to find out if taking Metformin improves walking ability in patients with peripheral arterial disease (PAD). In PAD the arteries (blood vessels) in the legs are narrowed because of the build up of plaque. The leg muscle can hurt in patients with PAD and this is usually described as a cramp or tiredness. This pain is called intermittent claudication. Metformin is an FDA approved medication for the treatment of diabetes. The investigators believe that Metformin may help your leg muscles work better.

The investigators will enroll up to 100 subjects in order to find 60 subjects with PAD at Brigham and Women's Hospital (BWH).

Study Overview

Status

Terminated

Detailed Description

Peripheral artery disease (PAD) is a manifestation of atherosclerosis that affects more than 7 million adults in the US. The prevalence of PAD increases with age and is estimated to be 15 20% among individuals 65 years of age and older. Patients with PAD have limited functional capacity; they walk more slowly and have less walking endurance than persons who do not have PAD, irrespective of whether they have classic symptoms of intermittent claudication or critical limb ischemia. This functional impairment adversely affects quality of life. Although flow limitation due to atherosclerotic stenosis is necessary for the development of symptoms in PAD, the lack of correlation between walking capacity and the degree of hemodynamic compromise raises the possibility that alternative mechanisms contribute to functional limitations in these patients. Putative mechanisms include inadequate skeletal muscle glucose uptake, altered skeletal muscle energetics, and impaired vasomotor tone and nutrient delivery mediated by endothelial dysfunction. Metformin, via AMPactivated protein kinase (AMPK)-dependent and independent mechanisms, can favorably affect skeletal muscle metabolic functions including glucose uptake, fatty acid oxidation, mitochondrial function, and consequently cellular energetics, and it also may have a direct salutary effect on vascular function via regulation of nitric oxide synthase. It is intriguing, therefore, to consider the possibility that metformin would improve skeletal muscle metabolic and vascular function in older patients with PAD and translate into functional benefits. Accordingly, the investigators seek to elucidate molecular mechanisms through which metformin affects skeletal muscle energetics and hypothesize that metformin will lead to advantageous metabolic, vascular, and physical functional changes in older patients with PAD.

Study Type

Interventional

Enrollment (Actual)

2

Phase

  • Phase 4

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Locations

    • Massachusetts
      • Boston, Massachusetts, United States, 02115
        • Brigham and Women's Hospital

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

40 years and older (ADULT, OLDER_ADULT)

Accepts Healthy Volunteers

No

Genders Eligible for Study

All

Description

Inclusion Criteria:

  • Age 40 years or greater
  • Intermittent claudication for 6 months or greater
  • Maximal walk time between 1-20 minutes on all ETTs
  • Resting ABI ≤ 0.9 in index leg at baseline
  • ABI falls ≥ 20% in index leg 1 minute post baseline ETT
  • MWT variability < 20%

Exclusion Criteria:

  • Type 1 or Type 2 Diabetes
  • Limb-threatening ischemia (rest pain, ulceration, gangrene)
  • Peripheral vascular surgery or PCI within 6 months
  • MI or CABG within 6 months
  • Carotid endarterectomy (CEA) within 6 months
  • Cerebrovascular accident or TIA within 6 months
  • Uncontrolled hypertension (SBP > 140 mmHg, DBP >90 mmHg)
  • Pentoxifylline/Cilostazol added/changed within 3 months
  • HMG-CoA reductase inhibitor added/changed within 3 months
  • Exercise limitations other than claudication (heart failure, angina, COPD, arthritis, neuropathy, etc.)
  • Serum creatinine ≥ 1.5 mg/dL
  • Pregnant or plans to become pregnant
  • 2 hour Oral Glucose Tolerance Test (OGTT) > 200 mg/dL

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: TREATMENT
  • Allocation: RANDOMIZED
  • Interventional Model: PARALLEL
  • Masking: TRIPLE

Arms and Interventions

Participant Group / Arm
Intervention / Treatment
EXPERIMENTAL: Metformin 1000 mg
metformin 1000 mg twice daily: In order to avoid gastrointestinal side effects, the starting dose of metformin will be 500 mg twice daily. After one week, the dose will be increased to 1000 mg twice daily (as two 500 mg tablets twice daily). Subjects will be instructed to take medications with breakfast and with dinner.
PLACEBO_COMPARATOR: Control
placebo twice daily: In order to maintain blinding during the titration period, individuals randomized to placebo will receive one placebo tablet twice daily for one week, followed by an increase to 2 placebo tablets twice daily. Subjects will be instructed to take medications with breakfast and with dinner.

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Change in PCr Recovery Time
Time Frame: baseline, 12 weeks
PCr recovery time, measured in seconds, is a measure of skeletal muscle metabolic function. PCr is a transport molecule and reservoir of high-energy phosphate bonds, which is important for cellular energetics. Phosphocreatine regeneration depends upon the skeletal muscle mitochondrial cells capacity for oxidative phosphorylation. We will measure PCr recovery time at baseline and after 12 weeks of treatment with metformin or placebo as an in vivo measure of mitochondrial function. Higher Pcr relative to P(i) during recovery is better and shorter recovery times are better.
baseline, 12 weeks

Secondary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Change in Flow-mediated Dilation (FMD)
Time Frame: baseline, 12 weeks
Flow mediated vasodilation of the brachial artery is a measure of endothelium-dependent vasodilation. Higher flow-mediated dilation (FMD), measured as the diameter of the brachial artery in millimeters, and reported as percent change after a flow stimulus compered to basal measurement, is better, indicative of better endothelial function.
baseline, 12 weeks

Other Outcome Measures

Outcome Measure
Measure Description
Time Frame
Change in Maximal Treadmill Walking Time
Time Frame: baseline, 12 weeks
Maximal treadmill walking time is measured in minutes or seconds. Higher values indicate a better outcome.
baseline, 12 weeks
Change in Pain-free Treadmill Walking Time
Time Frame: baseline, 12 weeks
Pain-free treadmill walking time is measured in minutes or seconds. Higher values indicate a better outcome.
baseline, 12 weeks
Change in Oxygen Consumption
Time Frame: baseline, 12 weeks
Oxygen consumption is measured in ml/kg/min. Higher values indicate better outcomes.
baseline, 12 weeks
Change in Six Minute Walk Test
Time Frame: baseline, 12 weeks
The 6-min walk test (6 MWT) is a submaximal exercise test that entails measurement of distance walked over a span of 6 minutes.The 6 MWT is measured in meters, and higher values indicate better outcomes.
baseline, 12 weeks

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start

July 1, 2013

Primary Completion (ACTUAL)

June 1, 2015

Study Completion (ACTUAL)

June 1, 2015

Study Registration Dates

First Submitted

July 12, 2013

First Submitted That Met QC Criteria

July 15, 2013

First Posted (ESTIMATE)

July 17, 2013

Study Record Updates

Last Update Posted (ACTUAL)

September 24, 2018

Last Update Submitted That Met QC Criteria

September 18, 2018

Last Verified

September 1, 2018

More Information

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Peripheral Artery Disease

Clinical Trials on Placebo

3
Subscribe