Robot-aided Proprioceptive Rehabilitation Training

September 27, 2021 updated by: University of Minnesota

Robot-aided Proprioceptive Rehabilitation Training With Additional Vibro-tactile Feedback

This study investigates the effect of a robot-aided 2-day proprioceptive training of the wrist on the proprioceptive and motor function of the wrist/hand complex in patients with proprioceptive impairment. The wrist proprioceptive training consists of active movement training with augmented haptic and vibro-tactile feedback provided by a patented wrist robotic system (US Serial No. 62/136,065). This study protocol can be applied to a variety of clinical and non-clinical populations. The purpose of this study is to obtain preliminary data on the effectiveness of the proprioceptive training in subjects with cortical stroke or peripheral sensory neuropathy.

Study Overview

Detailed Description

This protocol seeks to improve proprioceptive-motor function. Proprioception refers to the perception of limb position or motion and the orientation of one's body in space. Numerous medical conditions with motor symptoms are also associated with proprioceptive loss, such as osteoarthritis, Parkinson's disease, peripheral sensory neuropathy, stroke, and developmental coordination disorder.

However, therapies to improve proprioceptive function in these populations are either non-existent or very limited in scope although it is established that proprioceptive impairments severely degrade motor function. The proposed protocol focuses on proprioception for fine motor function of the hand/wrist joint complex, because hand/wrist motor control is highly important for activities of daily living.

The specific aims are to determine if a 2-day wrist proprioceptive training:

  1. improves limb position sense acuity,
  2. improves the spatial precision of wrist/hand motor tasks,
  3. increases the efficiency of performing such motor tasks,
  4. is associated with neural changes in cortical processing as measured by short-latency somatosensory evoke potentials (SEP) and motor evoked potentials (MEP) using transcranial magnetic stimulation.

The study follows a crossover design with two arms and two groups. Time frame for the completion of the study is up to 7 days depending on the start day of the week (Monday through Friday). No testing will occur on the weekend.

Group 1 will have the following time frame: Day 1: pre-test (approx. 3 hrs.) and training intervention (approx. 30 min.). Day 2: training intervention (approx. 30 min.) and post-test 1 (approx. 3 hrs.). Days 3-6: Usual care (min. of 2 days required). Days 5-7: Post-test 2 (depending on the start day of the week, it is either Day 5,6, or 7).

Group 2 will have the following time frame: Day 1: pre-test 1 (approx. 3 hrs.). Days 2-4: Usual care (min. of 2 days required). Days 4-6: pre-test 2 (approx. 3 hrs.) and training intervention (approx. 30 min.). Days 5-7: Training intervention and post-test 1 (depending on the start day of the week, it is either Day 5,6, or 7).

Study Type

Interventional

Enrollment (Actual)

50

Phase

  • Not Applicable

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Locations

    • Minnesota
      • Minneapolis, Minnesota, United States, 55455
        • University of Minnesota

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

4 years to 75 years (Child, Adult, Older Adult)

Accepts Healthy Volunteers

Yes

Genders Eligible for Study

All

Description

For all participants (both healthy and patient populations)

Inclusion Criteria:

  1. wrist passive range of motion (ROM) more than 22.5° in flexion/extension
  2. sense the vibro-tactile cues on either forearms in order to effectively receive the movement-related feedback
  3. resist minimal resistance in gravity-eliminated position (score at least 2+/5 with the physical examination of manual muscle testing (Hislop, Avers, & Brown, 2013)) ) in all wrist movement directions.

Exclusion Criteria:

  1. Regular intake of benzodiazepines.
  2. Cognitive impairment: score ≥ 23 on Mini-mental state examination (Folstein, Robins & Helzer, 1983)
  3. Depressive symptoms: score ≤ 19 on Beck depression inventory (Beck, Steer, & Carbin,1988).

Inclusion Criteria for Stroke Subjects

  1. at least 3 months after stroke
  2. whose age are between 30 to 75 years old.

Exclusion Criteria for Subjects undergoing the TMS procedure (Rossi, Hallett, Rossini, & Pascual-Leone, 2009)

  • Has implanted metal in the body.
  • Diagnosed with multiple sclerosis, major psychiatric conditions, epilepsy, history of seizures in the past 2 years, sleep deprivation, pregnancy, uncontrolled migraine, major traumatic head injury, severe heart disease, increased intracranial pressure, high consumption of alcohol, any conditions that predispose one to seizures
  • Is currently taking any pro-epileptic medication (e.g. epileptogenic drugs such as tricyclic antidepressants)
  • When no electromyography response can be elicited within the range of the TMS stimulator
  • Pregnant at the time of data collection .

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: Treatment
  • Allocation: Randomized
  • Interventional Model: Crossover Assignment
  • Masking: None (Open Label)

Arms and Interventions

Participant Group / Arm
Intervention / Treatment
Experimental: Proprioceptive training
This arm will receive specialized robot-aided proprioceptive training of the wrist next to usual care.
Training includes a virtual balance board and center-out task. Small vibratory motors placed on forearms provide vibro-tactile movement feedback (VTF). During familiarization participants learn to associate VTF with wrist movement and visual feedback. Vision is occluded after this phase. In the virtual balance board task participants use wrist motion to roll a ball to a target on the board. VTF indicates the desired movement direction and ball velocity. The center-out task involves wrist motion to control a cursor to reach a target. The wrist robot delivers an assistive force towards the target. VTF signals magnitude and direction of the cursor deviating away from the desired path.
Active Comparator: Usual care
This arm will receive what participants have been receiving from their healthcare providers. It may range from no treatment to various sessions of occupational and physical therapy at home, day rehabilitation, or outpatient visits.
Usual care refers to care that participants receive through their healthcare providers. It may range from no treatment to various sessions of occupational and physical therapy received at in- or outpatient rehabilitation clinics or at home.

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Joint position sense acuity of the wrist (just-noticeable-difference threshold)
Time Frame: For Group1: Change from pre-test at Day 1 (prior to training) to post-test 1 at Day 2. For Group 2: Change from pre-test 2 at Days 4-6 to post-test 1 at Days 5-7.
Using the wrist robot, the just-noticeable-difference threshold (JND) of wrist position will measured by a 2-alternative forced choice psychophysical paradigm. Participant's wrist will be passively flexed to two positions (the standard stimulus and the comparison stimuli) in random order. The standard stimulus is always 15° wrist flexion from neutral wrist position and the comparison stimulus is always larger than the standard. Participants indicate verbally which stimulus was perceived as having a larger amplitude. Unit is degrees.
For Group1: Change from pre-test at Day 1 (prior to training) to post-test 1 at Day 2. For Group 2: Change from pre-test 2 at Days 4-6 to post-test 1 at Days 5-7.

Secondary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Root-mean-square tracing error as a measure of movement accuracy
Time Frame: For Group1: Change from pre-test at Day 1 (prior to training) to post-test 1 at Day 2. For Group 2: Change from pre-test 2 at Days 4-6 to post-test 1 at Days 5-7.
Using the wrist robot, participants perform wrist movements to move a cursor on a screen. Task is to trace various template wave forms (saw tooth, sine wave, irregular, figure-of eight) displayed on the screen. The same procedure will be performed with a pen stylus on a digital tablet. The cursor position will be recorded continuously through the tracking task. Root-mean-square tracing error is calculated based on the difference between the cursor path and the template waveform. Unit is in mm.
For Group1: Change from pre-test at Day 1 (prior to training) to post-test 1 at Day 2. For Group 2: Change from pre-test 2 at Days 4-6 to post-test 1 at Days 5-7.
Movement time
Time Frame: For Group1: Change from pre-test at Day 1 (prior to training) to post-test 1 at Day 2. For Group 2: Change from pre-test 2 at Days 4-6 to post-test 1 at Days 5-7.
Movement time is the time it takes to complete either the tracing or pointing task. Unit is in seconds.
For Group1: Change from pre-test at Day 1 (prior to training) to post-test 1 at Day 2. For Group 2: Change from pre-test 2 at Days 4-6 to post-test 1 at Days 5-7.
Jerk cost as a measure of movement smoothness
Time Frame: For Group1: Change from pre-test at Day 1 (prior to training) to post-test 1 at Day 2. For Group 2: Change from pre-test 2 at Days 4-6 to post-test 1 at Days 5-7.
The jerk cost is defined as the integral of the first derivative of acceleration.
For Group1: Change from pre-test at Day 1 (prior to training) to post-test 1 at Day 2. For Group 2: Change from pre-test 2 at Days 4-6 to post-test 1 at Days 5-7.
Fugl-Meyer Assessment score
Time Frame: For Group1: Change from pre-test at Day 1 (prior to training) to post-test 1 at Day 2. For Group 2: Change from pre-test 2 at Days 4-6 to post-test 1 at Days 5-7.
Fugl-Meyer Assessment is a clinical instrument used to evaluate and measure recovery in post-stroke patients. Only the motor section for the upper extremity of the assessment is used (Fugl-Meyer et al., 1974). Range of possible scores is 0 [no recovery] - 66 [full recovery].
For Group1: Change from pre-test at Day 1 (prior to training) to post-test 1 at Day 2. For Group 2: Change from pre-test 2 at Days 4-6 to post-test 1 at Days 5-7.
Nottingham Sensory Assessment score
Time Frame: For Group1: Change from pre-test at Day 1 (prior to training) to post-test 1 at Day 2. For Group 2: Change from pre-test 2 at Days 4-6 to post-test 1 at Days 5-7.
Erasmus-modified Nottingham Sensory Assessment is a clinical instrument to evaluate somatosensory function. For this study only the proprioception section of upper limb is used (Stolk-Hornsveld, Crow, Hendriks, Van Der Baan, & Harmeling-Van Der Wel, 2006). Range of possible scores is 0 [absent] - 2 [intact].
For Group1: Change from pre-test at Day 1 (prior to training) to post-test 1 at Day 2. For Group 2: Change from pre-test 2 at Days 4-6 to post-test 1 at Days 5-7.
Canadian Occupational Performance Measure (COPM)
Time Frame: For Group1: Change from pre-test at Day 1 (prior to training) to post-test 1 at Day 2. For Group 2: Change from pre-test 2 at Days 4-6 to post-test 1 at Days 5-7.
COPM is an evidence-based outcome measure designed to capture a patient's self-perception of performance in everyday living (Law et al., 1994). One to five activities will be chosen by the participant. Range of possible scores is 1 [poor performance and low satisfaction] - 10 [very good performance and high satisfaction] per activity.
For Group1: Change from pre-test at Day 1 (prior to training) to post-test 1 at Day 2. For Group 2: Change from pre-test 2 at Days 4-6 to post-test 1 at Days 5-7.
Mean somatosensory-evoked potential (SEP) latencies for N20 and N30
Time Frame: For Group1: Change from pre-test at Day 1 (prior to training) to post-test 1 at Day 2. For Group 2: Change from pre-test 2 at Days 4-6 to post-test 1 at Days 5-7.
SEPs after median nerve stimulation are recorded. The latencies for N20 and N30 will be identified. Unit is in milliseconds.
For Group1: Change from pre-test at Day 1 (prior to training) to post-test 1 at Day 2. For Group 2: Change from pre-test 2 at Days 4-6 to post-test 1 at Days 5-7.
Peak-to-peak amplitude of motor-evoked potential (MEP)
Time Frame: For Group1: Change from pre-test at Day 1 (prior to training) to post-test 1 at Day 2. For Group 2: Change from pre-test 2 at Days 4-6 to post-test 1 at Days 5-7.
Single-pulse transcranial magnetic stimulation (TMS) is used to assess corticospinal excitability by eliciting MEP of the wrist extensor muscles using a method described by Samargia et al. (2014). Unit is millivolts.
For Group1: Change from pre-test at Day 1 (prior to training) to post-test 1 at Day 2. For Group 2: Change from pre-test 2 at Days 4-6 to post-test 1 at Days 5-7.

Other Outcome Measures

Outcome Measure
Measure Description
Time Frame
Tactile sensitivity
Time Frame: Measured on the first day of the intervention
Forearm tactile sensitivity assessment using the Semmes-Weinstein Monofilaments (Bell-Krotoski et al., 1995). Monfilaments measure both diminishing and returning cutaneous sensation. The monofilament bends at a force of 0.1N. Patient will report, yes, if the monofilament is perceived at that force level. Range of scores are + [perceived] and - [not perceived].
Measured on the first day of the intervention

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Investigators

  • Principal Investigator: Juergen Konczak, Ph.D, University of Minnesota

Publications and helpful links

The person responsible for entering information about the study voluntarily provides these publications. These may be about anything related to the study.

General Publications

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (Actual)

October 1, 2015

Primary Completion (Actual)

September 1, 2019

Study Completion (Actual)

May 24, 2021

Study Registration Dates

First Submitted

August 27, 2015

First Submitted That Met QC Criteria

September 30, 2015

First Posted (Estimate)

October 1, 2015

Study Record Updates

Last Update Posted (Actual)

September 28, 2021

Last Update Submitted That Met QC Criteria

September 27, 2021

Last Verified

September 1, 2021

More Information

Terms related to this study

Other Study ID Numbers

  • 1505M72302

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Stroke

Clinical Trials on Proprioceptive training

3
Subscribe