Validation of a Smartphone-Based Hearing-in-Noise Test (HearMe) (HearMe)

July 20, 2021 updated by: Kasra Zarei, University of Iowa

The purpose of this project is to validate a quick, easy-to-use and administer smartphone hearing-in-noise test. The Hearing-in-Noise Test (HINT) measures an individual's ability to hear speech in quiet and in noise. HINTs are traditionally done testing both ears together as binaural hearing ability is key in noisy settings and everyday, functional hearing.

The app (called HearMe) can potentially be used to easily and quickly collect hearing-in-noise and speech-in-noise measurements. The smartphone app developed is a hearing-in-noise test that presents the subject with a series of stimuli consisting of a spoken three-digit sequence presented at a varying hearing-to-noise ratio. For each stimulus presentation, the user tap the three-digit sequence. The duration of the app is less than 3 minutes. For this project the investigators will test at least 50 subjects with hearing loss and 50 control subjects between the ages of 18-80. The subjects will be invited to take the app. The approach for this pilot study is to characterize hearing-in-noise thresholds (also referred to as a speech-reception threshold) as measured by the app in both subject groups, and relate it to the phenotype of each group as a preliminary evaluation of the app as well as a preliminary validation against their routinely collected measurements of hearing function (pure-tone audiometry thresholds).

The study will assess the validity of the test construct in measuring hearing-in-noise thresholds, and serve as a foundation for further iterative designs of the app and future validation and characterization studies. This study seeks to validate a developed smartphone HINT on an initial cohort of patients and controls. It is anticipated that patients with hearing loss will display higher signal-to-noise ratio thresholds (as measured by the iPhone app) compared to controls.

Study Overview

Detailed Description

Age-related hearing loss, or presbycusis, is highly prevalent among the elderly. It can have a major impact on the quality of life due to progressive communication difficulties that may lead to psychosocial dysfunction and in extreme cases to social isolation and depression. Hearing aids and cochlear implants have evolved rapidly over the past decades and may strongly improve quality of life in elderly with hearing loss. Nevertheless, it is estimated that in the US and Europe only one out of five to six people with substantial hearing loss is actually using hearing aids. In fact, nearly 50% of people with hearing loss never underwent a hearing test at all. This may be due to denial of illness associated with aging or to disbelieve in bene t from hearing aids or cochlear implants. Hearing screening could increase awareness of hearing loss among elderly and identify those who might bene t from amplification. However, classical audiometry (i.e. pure- tone thresholds and speech-recognition in quiet) is not ideal for screening purposes as it is time consuming and it requires expensive equipment including a soundproof booth and a calibrated audiometer.

Over the past decades, several Speech-In-Noise tests were developed to get a better assessment of a person's hearing ability in real-life situations. These tests generally measure the speech reception threshold (SRT) in dB signal to noise ratio (SNR). SRT is determined as the difference between the level of presented speech and background noise at which the tested per- son can correctly reproduce 50% of words or sentences. It is now generally recognized that the SRT is more representative of a patient's hearing ability in real-life situations than pure- tone audiometry or speech recognition in quiet. The Speech- In-Noise test, based on spoken sentences, is still being used in clinical practice. However, its general use for a broad clinical population has been disputed because not every person is able to understand and repeat complete sentences in noise, regardless of his hearing loss. This test is there- fore considered as an assessment of the entire auditory system, including memory and certain linguistic aspects, rather than of hearing loss alone.

In 2013, the Digits-In-Noise (DIN) test was developed, overcoming several shortcomings of the previous telephone test. It uses, for example, wideband signals instead of the limited telephone bandwidth and concatenating digits, spoken by a male voice. The DIN test requires listeners to repeat three spoken numbers (a so-called digit triplet) presented through a headphone, while a continuous noise is presented synchronously to the same ear. The response is then scored correct or incorrect automatically by the computer. Depending on the test setting, the response can either be imputed by the listener him- self or by an administrator. By using simple digits in a closed set paradigm, the contribution of top-down processing and thus the influence of cognitive status is thought to be minimized. For this test, no learning effect was detected, low measurement errors were reported (0.7 dB SNR for normal-hearing listeners) and high validity was claimed by comparing measured digit- triplet SRTs and sentence SRTs. Although SRT-in-noise reflects different aspects of hearing acuity than pure-tone thresholds, both measures are also highly correlated. Previously reported correlation coefficients vary from 0.77 to 0.86. These studies included populations with a wide range of hearing losses, varying from severe to no hearing loss at all.

Based on this relationship, the DIN test could potentially be used as a screening instrument for hearing loss. However, these two studies did not report specifically on a population of elderly subjects, and this is one of the main target groups for hearing screening. It is important to validate the assumed relationship between SRT-in-noise and hearing loss for this particular population with a smartphone, as it may be influenced by general aging, for example, a decline in cognitive skills.

The purpose of this project is to validate a quick, easy-to-use and administer smartphone hearing-in-noise test. The app (called HearMe) can potentially be used to easily and quickly collect hearing-in-noise and speech-in-noise measurements. The smartphone app developed is a hearing-in-noise test that presents the subject with a series of stimuli consisting of a spoken three-digit sequence presented at a varying hearing-to-noise ratio. For each stimulus presentation, the user tap the three-digit sequence. The duration of the app is less than 3 minutes. For this project we will test at least 50 participants with hearing loss and 50 control subjects between the ages of 18-80. The participants will be invited to take the app. The approach for this pilot study is to characterize hearing-in-noise thresholds (also referred to as a speech-reception threshold) as measured by the app in both participant groups, and relate it to the phenotype of each group as a preliminary evaluation of the app as well as a preliminary validation against their routinely collected measurements of hearing function (pure-tone audiometry thresholds).

With this study, the investigators aim to evaluate the developed smartphone HINT/DIN test for its ability to screen the elderly for hearing loss. The investigators hope to examine the relationship between pure-tone thresholds and SRT-in-noise as measured by the HearMe smartphone application.

Study Type

Interventional

Phase

  • Not Applicable

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

18 years to 100 years (Adult, Older Adult)

Accepts Healthy Volunteers

No

Genders Eligible for Study

All

Description

Inclusion Criteria:

  • Age-matched (18-100)
  • Healthy normal controls with no known hearing loss
  • Patients with clinically assessed hearing loss

Exclusion Criteria:

  • Complete hearing loss/deafness
  • Cognitive decline or dysfunction, dementia

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: Screening
  • Allocation: Non-Randomized
  • Interventional Model: Parallel Assignment
  • Masking: Single

Arms and Interventions

Participant Group / Arm
Intervention / Treatment
Experimental: Hearing Loss Group
The investigators will characterize hearing-in-noise thresholds (also referred to as a speech-reception threshold) as measured by the HearMe app in patients with hearing loss.
The HearMe smartphone application is a digits-in-noise test that can be used to digitally quantify speech reception thresholds.
Other Names:
  • HearMe
  • HearMe IA
Active Comparator: Control Group
The investigators will characterize hearing-in-noise thresholds (also referred to as a speech-reception threshold) as measured by the HearMe app in control subjects without any prior or current hearing loss.
The HearMe smartphone application is a digits-in-noise test that can be used to digitally quantify speech reception thresholds.
Other Names:
  • HearMe
  • HearMe IA

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Standardized Hearing Tests (change in hearing)
Time Frame: Through study completion, an average of 1 year
Pure-tone audiometry threshold (threshold of hearing relative to frequency)
Through study completion, an average of 1 year

Secondary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Quick Hearing Check Questionnaire (change in hearing)
Time Frame: Through study completion, an average of 1 year
Better Hearing Institute Quick Hearing Check (15 items; score 1-60, higher = better hearing, lower = worse hearing)
Through study completion, an average of 1 year
Standardized Hearing Loss Questionnaire (change in hearing)
Time Frame: Through study completion, an average of 1 year
2009 Spatial Hearing Questionnaire (24 items, scored 1-100; higher = better hearing, lower = worse hearing)
Through study completion, an average of 1 year
Tinnitus Questionnaires (change in hearing)
Time Frame: Through study completion, an average of 1 year
Tinnitus Activities Questionnaire; Tinnitus Handicap Questionnaire (27 items, scored 1-100%; lower = less effects of tinnitus)
Through study completion, an average of 1 year

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Investigators

  • Principal Investigator: Zarei, University of Iowa

Publications and helpful links

The person responsible for entering information about the study voluntarily provides these publications. These may be about anything related to the study.

General Publications

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (Anticipated)

August 1, 2021

Primary Completion (Anticipated)

May 1, 2023

Study Completion (Anticipated)

May 1, 2024

Study Registration Dates

First Submitted

January 19, 2018

First Submitted That Met QC Criteria

February 9, 2018

First Posted (Actual)

February 12, 2018

Study Record Updates

Last Update Posted (Actual)

July 28, 2021

Last Update Submitted That Met QC Criteria

July 20, 2021

Last Verified

July 1, 2021

More Information

Terms related to this study

Plan for Individual participant data (IPD)

Plan to Share Individual Participant Data (IPD)?

No

IPD Plan Description

There is no intent to make IPD available to other researchers, besides the results published in a peer-reviewed journal publication.

Drug and device information, study documents

Studies a U.S. FDA-regulated drug product

No

Studies a U.S. FDA-regulated device product

Yes

product manufactured in and exported from the U.S.

No

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Hearing Loss

Clinical Trials on HearMe Smartphone Application

3
Subscribe