Effect of Gain on Closed-Loop Insulin

May 14, 2018 updated by: Joslin Diabetes Center

The purpose of this study is to test the ability of an advanced external Physiologic Insulin Delivery (ePID) algorithm (a step by step process used to develop a solution to a problem) to get acceptable meal responses over a range of gain. Gain is defined as how much insulin is given in response to a change in a patient's glucose level.

This study also examines the effectiveness of the external Physiologic Insulin Delivery (ePID) closed-loop insulin delivery computer software. The investigators would like to assess whether fasting target levels can be achieved as the closed-loop gain increases or decreases, and to evaluate the system's ability to produce an acceptable breakfast meal response.

Study Overview

Status

Completed

Conditions

Detailed Description

There have been significant advances in diabetes management technology, including more sophisticated insulin pumps and more accurate real-time continuous glucose monitors. The next technological development is widely thought to be the introduction of an algorithm linking the pump and sensor to form a closed-loop insulin delivery system. The algorithm used for this purpose needs to be robust to changes in an individual's insulin sensitivity, and the sensor's sensitivity to glucose. Insulin sensitivity (how much the patient's glucose level changes in response to a change in insulin delivery) and algorithm gain (how much insulin is delivered in response to a change in glucose) determine the systems overall closed-loop gain. Ideally, the overall gain can be set to achieve the lowest possible peak postprandial glucose response without postprandial hypoglycemia. However, if the algorithm's gain is set to a fixed value and the subject's insulin sensitivity changes, the overall-gain will change. Some degradation in closed-loop performance might be acceptable during periods whenever the subject's insulin sensitivity is low (i.e., the subject is insulin resistant) and the risk of hypoglycemia may actually be reduced. However, if the subject becomes more sensitive the system may become less stable and the risk of postprandial hypoglycemia may increase. In addition to changes in insulin sensitivity, glucose sensors will sometimes over- or under-read blood glucose as sensor sensitivity increases or decreases. This will result in a change in the closed-loop algorithm's effective target. The purpose of this study is to evaluate the ability of an advanced Physiologic Insulin Delivery algorithm to achieve an acceptable breakfast response as the gain and effective target glucose level changes. Specifically:

  1. to assess the fasting glucose levels achieved as the overall closed-loop gain and effective target is increased or decreased, and
  2. determine the system's ability to produce an acceptable breakfast meal response under these conditions

Study Type

Interventional

Enrollment (Actual)

8

Phase

  • Not Applicable

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Locations

    • Massachusetts
      • Boston, Massachusetts, United States, 02215
        • Joslin Diabetes Center

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

18 years to 75 years (Adult, Older Adult)

Accepts Healthy Volunteers

No

Genders Eligible for Study

All

Description

Inclusion Criteria:

  • Type 1 diabetes for > 3 years
  • Manage diabetes using a continuous glucose monitor and continuous subcutaneous insulin infusion pump
  • Non obese (BMI < 30)
  • Aged 18 - 75 years old
  • HbA1c < 8 %

Exclusion Criteria:

  • renal or hepatic failure
  • cancer or lymphoma
  • Malabsorption or malnourishment
  • Hypercortisolism
  • Alcoholism or drug abuse
  • Anemia (hematocrit < 36 in females and <40 in males)
  • Eating disorder
  • Dietary restrictions
  • Acetaminophen allergy
  • Chronic acetaminophen use
  • Glucocorticoid therapy
  • History of gastroparesis
  • Use of Beta blockers

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: Basic Science
  • Allocation: Randomized
  • Interventional Model: Crossover Assignment
  • Masking: None (Open Label)

Arms and Interventions

Participant Group / Arm
Intervention / Treatment
Experimental: HIGH error, LOW error, NO error
Subjects were randomized to receive overnight and breakfast closed-loop glucose control glucose on three occasions: first with glucose-value-used-for-control higher than blood glucose (HIGH error), then second with glucose-value-used-for-control lower than blood glucose (LOW error), then third with glucose-value-used-for-control equal blood glucose (NO error).
Overnight and breakfast closed-loop control were performed using a target glucose of 120 mg/dL but with the glucose-value-used-for-control equal to 1.33 times the true glucose value (analogous to higher gain lower target).
Overnight and breakfast closed-loop control were performed using a target glucose of 120 mg/dL and glucose-value-used-for-control equal to the true glucose value.
Overnight and breakfast closed-loop control were performed using a target glucose of 120 mg/dL but with the glucose-value-used-for-control equal to 0.8 times the true glucose value (analogous to lower gain higher target).
Experimental: HIGH error, NO error, LOW error
Subjects were randomized to receive overnight and breakfast closed-loop glucose control glucose on three occasions: first with glucose-value-used-for-control higher than blood glucose (HIGH error), then second with glucose-value-used-for-control equal blood glucose (NO error), then third with glucose-value-used-for-control lower than blood glucose (LOW error).
Overnight and breakfast closed-loop control were performed using a target glucose of 120 mg/dL but with the glucose-value-used-for-control equal to 1.33 times the true glucose value (analogous to higher gain lower target).
Overnight and breakfast closed-loop control were performed using a target glucose of 120 mg/dL and glucose-value-used-for-control equal to the true glucose value.
Overnight and breakfast closed-loop control were performed using a target glucose of 120 mg/dL but with the glucose-value-used-for-control equal to 0.8 times the true glucose value (analogous to lower gain higher target).
Experimental: NO error, HIGH error, LOW error
Subjects were randomized to receive overnight and breakfast closed-loop glucose control glucose on three occasions: first with glucose-value-used-for-control equal blood glucose (NO error), then second with glucose-values-used-for-control higher than blood glucose (HIGH error), then third with glucose-value-used-for-control lower than blood glucose (LOW error).
Overnight and breakfast closed-loop control were performed using a target glucose of 120 mg/dL but with the glucose-value-used-for-control equal to 1.33 times the true glucose value (analogous to higher gain lower target).
Overnight and breakfast closed-loop control were performed using a target glucose of 120 mg/dL and glucose-value-used-for-control equal to the true glucose value.
Overnight and breakfast closed-loop control were performed using a target glucose of 120 mg/dL but with the glucose-value-used-for-control equal to 0.8 times the true glucose value (analogous to lower gain higher target).
Experimental: NO error, LOW error, HIGH error
Subjects were randomized to receive overnight and breakfast closed-loop glucose control glucose on three occasions: first with glucose-value-used-for-control equal blood glucose (NO error), then second with glucose-value-used-for-control lower than blood glucose (LOW error), then third with glucose-value-used-for-control higher than blood glucose (HIGH error).
Overnight and breakfast closed-loop control were performed using a target glucose of 120 mg/dL but with the glucose-value-used-for-control equal to 1.33 times the true glucose value (analogous to higher gain lower target).
Overnight and breakfast closed-loop control were performed using a target glucose of 120 mg/dL and glucose-value-used-for-control equal to the true glucose value.
Overnight and breakfast closed-loop control were performed using a target glucose of 120 mg/dL but with the glucose-value-used-for-control equal to 0.8 times the true glucose value (analogous to lower gain higher target).
Experimental: LOW error, NO error, HIGH error
Subjects were randomized to receive overnight and breakfast closed-loop glucose control glucose on three occasions: first with with glucose-value-used-for-control lower than blood glucose (LOW error), then second with glucose-value-used-for-control equal blood glucose (NO error), then third with glucose-value-used-for-control higher than blood glucose (HIGH error).
Overnight and breakfast closed-loop control were performed using a target glucose of 120 mg/dL but with the glucose-value-used-for-control equal to 1.33 times the true glucose value (analogous to higher gain lower target).
Overnight and breakfast closed-loop control were performed using a target glucose of 120 mg/dL and glucose-value-used-for-control equal to the true glucose value.
Overnight and breakfast closed-loop control were performed using a target glucose of 120 mg/dL but with the glucose-value-used-for-control equal to 0.8 times the true glucose value (analogous to lower gain higher target).
Experimental: LOW error, HIGH error, NO error
Subjects were randomized to receive overnight and breakfast closed-loop glucose control glucose on three occasions: first with glucose-value-used-for-control lower than blood glucose (LOW error), then second with glucose-value-used-for-control equal blood glucose (NO error), then third glucose-value-used-for-control higher than blood glucose (HIGH error),
Overnight and breakfast closed-loop control were performed using a target glucose of 120 mg/dL but with the glucose-value-used-for-control equal to 1.33 times the true glucose value (analogous to higher gain lower target).
Overnight and breakfast closed-loop control were performed using a target glucose of 120 mg/dL and glucose-value-used-for-control equal to the true glucose value.
Overnight and breakfast closed-loop control were performed using a target glucose of 120 mg/dL but with the glucose-value-used-for-control equal to 0.8 times the true glucose value (analogous to lower gain higher target).

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Glucose Area Under the Curve (AUC) Breakfast
Time Frame: On day #1, day #2 and day #3 (each day could be 24 hours to 7 days apart from prior one, and completed within 6 week period) 8:00 AM to 2:00 PM on day following admission, with samples obtained every 10-15 minutes, for each sequence of calibration errors
Glucose Area Under the Curve (AUC) Breakfast defines the total exposure to glucose during breakfast. Breakfast is typically considered the most difficult meal to control; low AUC is desirable.This outcome measure was analyzed for each of the three calibration error values (high error, no error and low error).
On day #1, day #2 and day #3 (each day could be 24 hours to 7 days apart from prior one, and completed within 6 week period) 8:00 AM to 2:00 PM on day following admission, with samples obtained every 10-15 minutes, for each sequence of calibration errors

Secondary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Peak and Nadir Postprandial Glucose Concentration
Time Frame: On day #1, day #2 and day #3 (each day could be 24 hours to 7 days apart from prior one, and completed within 6 week period) 8:00 AM to 12:00 PM on day following admission, with samples obtained every 10-15 minutes, for each sequence of calibration errors
Highest and lowest glucose concentrations obtained during breakfast meal.
On day #1, day #2 and day #3 (each day could be 24 hours to 7 days apart from prior one, and completed within 6 week period) 8:00 AM to 12:00 PM on day following admission, with samples obtained every 10-15 minutes, for each sequence of calibration errors

Other Outcome Measures

Outcome Measure
Measure Description
Time Frame
Nighttime Time-in-target 5.0-8.33mmol/l (Controller Set-point Plus and Minus 15 mg/dL)
Time Frame: On day #1, day #2 and day #3 (each day could be 24 hours to 7 days apart from prior one, and completed within 6 week period) 12:00 AM to 6:00 AM on day following admission, with samples obtained every 10-15 minutes, for each sequence of calibration errors
Night-time in target range 5.0-8.33, following the 3 hour controller initialization period blood glucose remained at or near target.
On day #1, day #2 and day #3 (each day could be 24 hours to 7 days apart from prior one, and completed within 6 week period) 12:00 AM to 6:00 AM on day following admission, with samples obtained every 10-15 minutes, for each sequence of calibration errors

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Investigators

  • Principal Investigator: Howard Wolpert, MD, Joslin Diabetes Center

Publications and helpful links

The person responsible for entering information about the study voluntarily provides these publications. These may be about anything related to the study.

General Publications

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start

December 1, 2013

Primary Completion (Actual)

April 1, 2015

Study Completion (Actual)

April 1, 2015

Study Registration Dates

First Submitted

February 7, 2014

First Submitted That Met QC Criteria

February 14, 2014

First Posted (Estimate)

February 19, 2014

Study Record Updates

Last Update Posted (Actual)

May 17, 2018

Last Update Submitted That Met QC Criteria

May 14, 2018

Last Verified

May 1, 2018

More Information

Terms related to this study

Plan for Individual participant data (IPD)

Plan to Share Individual Participant Data (IPD)?

NO

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Type 1 Diabetes

Clinical Trials on HIGH error

3
Subscribe