Radio-Immuno-Modulation in Lung Cancer (RIM)

February 27, 2024 updated by: Dr. Razvan Bucur Diaconescu, Hopital du Sacre-Coeur de Montreal

Radio-Immuno-Modulation for Advanced Lung Cancer: a Pilot Study Evaluating Tolerance and Immune Responses

This project will assess the feasibility of treating advanced cancer using the immune system, without any anti-cancer drug. In this pilot study, the investigators propose combining low-dose radiotherapy, in lung cancer patients, with allogeneic immune cells obtained from a donor. The patients will receive radiotherapy directed to one of the patient's tumors, as well as an immunomodulatory drug called cyclophosphamide. Thereafter, they will receive the infusion of donor immune cells.

Study Overview

Detailed Description

Metastatic lung cancer remains incurable despite numerous studies and treatments tried, including chemotherapy and, more recently, targeted therapies.

Cancer can escape immune surveillance through different mechanisms: low levels of tumor associated antigens (TAA), regulatory T cells, and immunosuppressive cytokines. Non-cytolytic doses of radiation have been shown to reverse some of these pathways in experimental models. It up-regulated the density of the MHC molecules presenting TAA and increased the T cell infiltration of the tumor (1). Patients with lymphoma, liver or prostate cancer were treated with radiotherapy combined with immunotherapy, in the form of a TLR9 agonist, autologous dendritic cells or a prostate-specific antigen vaccine (2, 3, 4). These trials have shown an induction of T cell reactivity against TAA. Another form of immunotherapy, used for patients with refractory hematologic malignancies is allogeneic hematopoietic stem cell transplantation (HSCT) (5). Its success has relied on cell infusions from a donor, demonstrating the immunologic control sustained by allogeneic cells (6).

The approach investigated in this study uses the immune cells from a donor to induce a tumor destruction reaction. This will be amplified by the immunological effects of radiotherapy. Many oncogenes are present in lung cancers and low-dose radiation increases their expression on the surface of the tumor cell. In addition, radiation has the property to stimulate the production of inflammatory cytokines and chemokines in the irradiated site. Finally, the donor's immune cells shall respond physiologically by migrating to the site of inflammation. This will trigger an immune reaction directed against the abnormal cancer cells.

A total of 24 patients are expected to be recruited over the study period, estimated to be 3 years. The allogeneic cells will be obtained from one of two possible donor types. For patients having a living donor, the immune cells will be harvested through a collection procedure called apheresis. The living donor should be a sibling with 3/6 or less HLA compatibility with the patient, at the A, B and DRB1 loci. For patients who do not have such a living donor, allogeneic cells from a cryopreserved umbilical cord blood (UCB) unit will be used.

The treatment course will be the following: low-dose radiotherapy will be delivered to a single tumor site, which could be either the primary tumor or one of its metastases. Low-dose cyclophosphamide will be given to decrease regulatory T cell activity and increase anti-tumor responses. Allogeneic immune cells will be administered thereafter, according to the treatment arm the patient has been assigned.

Study Type

Interventional

Enrollment (Estimated)

24

Phase

  • Phase 1

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Locations

    • Quebec
      • Montréal, Quebec, Canada, H4J 1C5
        • Hopital Sacre-Coeur

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

18 years and older (Adult, Older Adult)

Accepts Healthy Volunteers

No

Description

Inclusion criteria:

  • Advanced lung cancer documented by a histo-pathological analysis;
  • Patients who received at least one line of anti neoplastic therapy;
  • Presence of at least one tumor mass >1 cm and not previously irradiated;
  • Metastases situated in one of the following sites: lung, skeleton, lymph nodes or soft tissue;
  • Presence of at least one not previously irradiated metastasis;
  • Life expectancy greater than 3 months;
  • ECOG performance status ≤ 2.

Exclusion criteria:

  • Second active cancer necessitating treatment;
  • History of autoimmune disease;
  • Patients dependent on immunosuppressive medications, including corticosteroids;
  • Decreased diffusion capacity below 40%, if radiation planned to a lung metastasis;
  • Patients needing urgent radiotherapy.

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: Treatment
  • Allocation: Non-Randomized
  • Interventional Model: Parallel Assignment
  • Masking: None (Open Label)

Arms and Interventions

Participant Group / Arm
Intervention / Treatment
Experimental: Patients with a living donor
Radiation + PBMC
The day of allogeneic cell infusion will be referred to as Day 0 and the n-th day before that, as Day -n. The dose of external radiation will be 15 Gy divided in 3 fractions, from Day -3. Cyclophosphamide, 250 mg/m2 will be given on Day -2. Donors will receive 5 daily doses of GCSF, 10 µg/kg, by subcutaneous injection from Day -4. PBMC will be collected through apheresis on Day 0. A dose of 5 x 10exp7 CD3 cells/kg will be administered. The infused volume will be adjusted to contain this T cell dose.
Experimental: Patients with a UCB donor
Radiation + UCB
The day of allogeneic cell infusion will be referred to as Day 0 and the n-th day before that, as Day -n. The UCB unit should have at least 4 of 6 HLA compatibility and at least 3 x 10exp6 TNC per kg patient weight. The dose of external radiation will be 15 Gy, divided in 3 fractions, starting on Day -3. Cyclophosphamide, 250 mg/m2 intravenously, will be given on Day -2.

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Incidence of treatment-related adverse events
Time Frame: Up to 6 months
Evaluation by follow-up clinic visits, including medical questionnaire, physical exam & blood tests: complete blood count, electrolytes, renal & liver function tests. AE will be graded using National Cancer Institute's Common Toxicity Criteria version 3 (7). Evaluations will take place twice a week for the first 2 weeks, weekly for 2 weeks, every 2 weeks for 2 months & every month for 3 months. It is anticipated that a maximum of 1 of 6 patients will have grade 3 side effects, including nausea, diarrhea, dyspnea, cough, fever, rash.
Up to 6 months

Secondary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Immune responses - T cell infiltration
Time Frame: Up to 1 month
Assessment using biopsies done before & 1-2 weeks after treatment. The block slides will be stained with CD3, CD4, CD8 & PDL-1 antibodies. T cell density will be expressed as the number of CD4+ and CD8+ cells to tumor cell ratio. The degree of T cell infiltration of the tumors will be assessed by comparing these ratios between pre & post treatment samples.
Up to 1 month
Immune responses - Tumor cell phenotype
Time Frame: Up to 1 month
Assessment using biopsies done before & 1-2 weeks after treatment. Flow cytometry will be used to assess the following tumor markers: HLA, Fas, ICAM-1, PDL-1. The changes in tumor cell phenotypes will be assessed by comparing the mean fluorescence intensity of the above markers between pre & post treatment samples. The PDL-1 tumor cell expression will also be compared on the block slides between pre & post treatment samples.
Up to 1 month
Immune responses - tumor infiltrating T cell phenotype
Time Frame: Up to 1 month
Assessment using biopsies done before & 1-2 weeks after treatment. Flow cytometry will be used to assess the following markers on tumor infiltrating T cells: CD3, CD4, CD8, CD25 & Foxp3. The nature and magnitude of T cell infiltration will be assessed by comparing the frequencies of these T cell subsets between pre & post treatment samples.
Up to 1 month
Immune responses - origin of tumor infiltrating T cells
Time Frame: Up to 1 month
Assessment using biopsies done 1-2 weeks after treatment. Single cell suspensions will be stained with the following markers for tumor infiltrating T cells: CD3, CD4 and CD8. CD4+ and CD8+ T cells will be isolated by fluorescence-activated cell sorting. Their origin (patient vs donor) will be determined by a chimerism assay. The frequencies of donor-derived cells will be determined by PCR quantification of patient and donor specific VNTR bands.
Up to 1 month

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Investigators

  • Principal Investigator: Razvan B Diaconescu, MD, CIUSSS du Nord-de-l'Île-de-Montréal - Hôpital du Sacré-Cœur de Montréal

Publications and helpful links

The person responsible for entering information about the study voluntarily provides these publications. These may be about anything related to the study.

General Publications

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (Actual)

April 20, 2018

Primary Completion (Estimated)

October 1, 2024

Study Completion (Estimated)

April 1, 2025

Study Registration Dates

First Submitted

October 7, 2015

First Submitted That Met QC Criteria

October 15, 2015

First Posted (Estimated)

October 19, 2015

Study Record Updates

Last Update Posted (Actual)

February 29, 2024

Last Update Submitted That Met QC Criteria

February 27, 2024

Last Verified

February 1, 2024

More Information

Terms related to this study

Plan for Individual participant data (IPD)

Plan to Share Individual Participant Data (IPD)?

NO

Drug and device information, study documents

Studies a U.S. FDA-regulated drug product

No

Studies a U.S. FDA-regulated device product

No

product manufactured in and exported from the U.S.

No

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Lung Cancer

Clinical Trials on Patients with a living donor

3
Subscribe