이 페이지는 자동 번역되었으며 번역의 정확성을 보장하지 않습니다. 참조하십시오 영문판 원본 텍스트의 경우.

Comparing Different Amounts of Vitamin D Supplementation to Preschool Children Living in Northern and Southern Sweden (Dvisum)

2016년 10월 31일 업데이트: Torbjörn Lind, Umeå University

Vitamin D has a range of biological effects of public health relevance. Vitamin D status is assessed on levels of its metabolite 25-hydroxyvitamin D [25(OH)D], where levels < 50 nmol/L indicate insufficiency. Despite studies indicating that the vitamin D intake among Swedish children are significantly below recommendations, little is known of their vitamin D status. The investigators have recently found inadequate vitamin D status in pre-school children living in northern Sweden, especially in dark-skinned children and during the winter months despite vitamin D intakes meeting the recommendations. Overall, 25% of the light skinned and 40% of the dark skinned children had S-25(OH) D <50 nmol/L (Öhlund I, unpublished data). The aim is to examine which amount of vitamin D is needed to maintain or increase S-25(OH)D to ≥50 nmol/L among 97.5% of the participants regardless of skin color or geographic location (northern or southern Sweden). Furthermore the investigators will examine if vitamin D status affects on health markers as bone density, blood pressure, serum lipids, fatty acids, inflammatory and immunological markers and mental wellbeing.

Children aged 5-8 years living either northern (Umeå) or southern Sweden (Malmö) will be recruited to this trial during November-December 2012. They will be randomized to a vitamin D supplement of either 10 or 25 g per day, or in Malmö also placebo to be used for three months. The randomization will be stratified according to skin color (light or dark) according to a method using visual inspection and interviews of parents/guardians. The investigators will use a 2×2×2 factorial design to investigate the effects of two different doses of vitamin D (10 µg and 25 µg) in children with dark and light skin color, living in northern (Umeå) and southern (Malmö), Sweden. In order to achieve a moderate difference between groups (effect size 0.25) 20 children per group are required (power> 87%, alpha = 0.05). With an estimated dropout of 10%, a total of 220 children will be included.

At baseline, the participants will undergo blood sampling for S-25(OH)D and other biomarkers, blood pressure and anthropometrical measurements, including bone densitometry and body composition using air displacement pletysmography, and the parents will answer a questionnaire on behavioral and emotional problems in the participating child using the Child Behavior Checklist. These measurements will be repeated at follow-up in February-March 2013.

연구 개요

상세 설명

Vitamin D has a range of biological effects of public health relevance (Prentice et al, 2008). Besides its well known role in mineralization of bone and teeth, vitamin D also play important roles in metabolic functions, the pathogenesis of certain diseases, e.g. type 1 diabetes, celiac disease, asthma and allergies, as well as in the prevention of cancer (Holick, 2008).

Vitamin D status is assessed on plasma or serum levels of its metabolite 25-hydroxyvitamin D [25(OH)D, calcidiol] as it reflects the sum of vitamin D converted in the skin through sunlight exposure and from dietary sources. Several reports advocate that levels <37 nmol/L denote severe vitamin D deficiency; levels <50 nmol/L insufficient; 50-75 nmol/L suboptimal levels and ≥75nmol/L optimal levels (Dawson-Hughes et al, 2005, Huh et al, 2008, Yetley, 2008). In children, most suggested cut-off values for adequate levels of 25(OH)D are based on the absence of rickets, increased measures of bone mineralization and maximal suppression of parathyroid hormone (PTH) levels (Greer, 2009).

The major source of vitamin D is dermal biosynthesis catalyzed by ultraviolet B sunlight (Cashman et al, 2011). However, during winter, northern Sweden has limited hours of daylight leading to reduced sun exposure. Consequently, the dietary source of vitamin D is of specific importance in this region (Brustad et al, 2007, Edvardsen et al, 2007). Fatty fish, eggs, vitamin D fortified milk and margarines are the main sources, mainly supplying the most active form D3. These are important basic foods which also contain common food allergens. Thus, children with food allergies to milk, fish, and egg can be at increased risk of vitamin D deficiency. Several dairy products are fortified with vitamin D, but in some products in the form of D2 which is not as bioactive as D3.

Skin color affects the capacity to form vitamin D3 as children with dark complexion need 5-10 times more sun exposure to generate the same amount of vitamin D3 compared to fair-skinned children, and therefore are at increased risk of vitamin D deficiency when exposure to sun is limited (Holick, 2005). Recently the recommendations on protecting the skin from sunshine to reduce the risk of skin cancer later in life has been debated as it may increase the risk of vitamin D deficiency (Stechschulte et al, 2011). Obesity in children might be another risk factor for vitamin D deficiency, since an increased proportion of available vitamin D may be stored in adipose tissue thus lowering the S-25(OH)D (Prentice, 2008).

Despite studies indicating that the vitamin D intake among Swedish children and adolescents are significantly below recommendations, little is known of their vitamin D status (Garemo et al, 2007, Enghardt et al, 2006, Öhlund et al, 2010). Furthermore there is a paucity of studies investigating vitamin D intake and status in food-allergic adolescents who may be at increased risk of vitamin D insufficiency due to strict avoidance of vitamin D containing foods.

Recently the investigators of Dvisum assessed Vitamin D status in pre-school children (n=90; mean age 54+/-7.1 mo), all living in northern Sweden (latitude 63°) and half of them with fair skin, half with darker complexion. The study group was examined first in August-September (late summer) and then the following January-February (winter). Skin type, vitamin D intake, anthropometrics, S-25(OH) D and parathyroid hormone (S-PTH) were assessed. The investigators found inadequate vitamin D status in these children living in northern Sweden, especially in dark-skinned children and during the winter despite vitamin D intakes meeting the recommendations, prompting strategies to improve intake of vitamin D in this population. Overall, 25% and 40% of the light and dark skinned had S-25(OH) D <50 nmol/L.

The aim is to examine which amount of vitamin D is needed to maintain or increase S-25(OH)D to ≥50 nmol/L among 97.5% of the participants regardless of skin color or geographic location (northern or southern Sweden). Furthermore the investigators will examine if vitamin D status affects health markers such as bone density, blood pressure, serum lipids, fatty acids and inflammatory and immunological markers and mental wellbeing.

In order to identify whether there are differences depending on the latitude within Sweden, children will be recruited both from northern Sweden (Umeå) and from southern Sweden (Malmo). As it is unclear what levels of the serological marker 25 (OH) D that affect the health of children, different markers of health will be examined before and after the intervention. Children aged 5-8 years, 50% fair-skin 50 % darker skin, in northern Sweden (Umeå) and southern Sweden (Malmö) will be included in a longitudinal, randomized trial. The children are first examined in November-December and randomized to a vitamin D supplement of either 10 or 25 g per day, to be used for three months. At the follow up in February-March all examinations will be repeated.

The investigators will use a 2 × 2 × 2 factorial design to investigate the effects of two different doses of vitamin D (10 µg and 25 µg) in children with dark and light skin color, living in northern (Umeå) and southern (Malmö), Sweden. In order to achieve a moderate difference between groups (effect size 0.25) requires 20 children per group (power>87%, alpha = 0.05). With this group size, we can see a group difference in the S-25 (OH) D of 3.75 nmol/L, S-PTH of 0.35 mmol/L and bone mineral density in the lumbar region of 0.075 g/cm2. In Skåne, but not Umeå also a placebo group will participate. With an estimated dropout of 10%, a total of 220 children will be included.

The study include sampling for analysis of S-25 (OH) D, calcium, phosphate, alkaline phosphatase (ALP), magnesium, PTH and osteocalcin, serum lipids (total cholesterol, HDL cholesterol, LDL cholesterol. ApoA1 and ApoB lipoprotein) and fatty acids as well as inflammatory and immunological markers (CRP, interleukin (IL) -1 and 2, IL-4, IL-6, I-10, Il-17, CD40 ligand, TNF and IFNγ, fibrinogen and antisecretory factor). Before sampling, the children receive a topical anesthetic (EMLA).

Measurements of blood pressure and anthropometric measurements of length, weight, waist circumference and bone densitometry (DEXA) and body composition (fat mass% and fat free mass) using a Air Displacement Plethysmography ( BOD POD) Questions about diet, vitamin supplements, foreign travel, how much time the children spend time outdoors and the use of sunscreen as well as questions about the child's health and family situation will be answered by the parents through a questionnaire. To investigate the possible association between vitamin D status and mental well-being, the investigators will use the Child Behaviour Checklist (CBCL).

This study is national with a multicultural perspective, it is expected to provide knowledge about the needs of vitamin D to prevent vitamin D deficiency. The study is also expected to provide a better understanding of association between vitamin D status and various markers of health among children.

By preventing vitamin D deficiency, poor bone development, susceptibility to infections, and perhaps prone to autoimmune diseases and cardiovascular risk factors could be reduced, and hopefully the mental well-being improved, which reduces costs to both society and the individual, and reduces unnecessary suffering of individuals.

연구 유형

중재적

등록 (실제)

220

단계

  • 해당 없음

연락처 및 위치

이 섹션에서는 연구를 수행하는 사람들의 연락처 정보와 이 연구가 수행되는 장소에 대한 정보를 제공합니다.

연구 장소

    • Skåne
      • Malmö, Skåne, 스웨덴, 20502
        • Department of Pediatrics, University hospital Malmö
    • Västerbotten
      • Umeå, Västerbotten, 스웨덴, 90187
        • Pediatrics, Department of Clinical Sciences, Umeå University

참여기준

연구원은 적격성 기준이라는 특정 설명에 맞는 사람을 찾습니다. 이러한 기준의 몇 가지 예는 개인의 일반적인 건강 상태 또는 이전 치료입니다.

자격 기준

공부할 수 있는 나이

5년 (어린이)

건강한 자원 봉사자를 받아들입니다

연구 대상 성별

모두

설명

Inclusion Criteria:

  • 5-7 years of age
  • Healthy

Exclusion Criteria:

  • Chronic illness, including coeliac disease or other chronic gastrointestinal disorders
  • Drugs that can affect bone health or vitamin D uptake
  • Cow's milk allergy

공부 계획

이 섹션에서는 연구 설계 방법과 연구가 측정하는 내용을 포함하여 연구 계획에 대한 세부 정보를 제공합니다.

연구는 어떻게 설계됩니까?

디자인 세부사항

  • 주 목적: 방지
  • 할당: 무작위
  • 중재 모델: 요인 할당
  • 마스킹: 네 배로

무기와 개입

참가자 그룹 / 팔
개입 / 치료
실험적: Umeå, vitamin D 25 microg/d, light skin
Participants with light skin will be randomized to a milk drink providing 25 microg vitamin D3 per day.
The vitamin D supplement will be provided as a milk drink taken daily.
활성 비교기: Umeå, vitamin D 10 microg/d, dark skin
Participants with dark skin will be randomized to a milk drink providing 10 microg vitamin D3 per dag.
The vitamin D supplement will be provided as a milk drink taken daily.
활성 비교기: Umeå, vitamin D 10 microg/d, light skin
Participants with light skin will be randomized to a milk drink providing 10 microg vitamin D3 per dag.
The vitamin D supplement will be provided as a milk drink taken daily.
실험적: Malmö, vitamin D 25 microg/d, dark skin
Participants with dark skin will be randomized to a milk drink providing 25 microg vitamin D3 per day.
The vitamin D supplement will be provided as a milk drink taken daily.
실험적: Malmö, vitamin D 25 microg/d, light skin
Participants with light skin will be randomized to a milk drink providing 10 microg vitamin D3 per day.
The vitamin D supplement will be provided as a milk drink taken daily.
활성 비교기: Malmö, vitamin D 10 microg/d, dark skin
Participants with dark skin will be randomized to a milk drink providing 10 microg vitamin D3 per day.
The vitamin D supplement will be provided as a milk drink taken daily.
활성 비교기: Malmö, vitamin D 10 microg/d, light skin
Participants with light skin will be randomized to a milk drink providing 10 microg vitamin D3 per day.
The vitamin D supplement will be provided as a milk drink taken daily.
위약 비교기: Malmö, placebo, dark skin,
Participants with dark skin will be randomized to a milk drink without added vitamin D (placebo).
Milk drink with no extra vitamin D (placebo)
다른 이름들:
  • 위약
위약 비교기: Malmö, placebo, light skin
Participants with light skin will be randomized to a milk drink without added vitamin D (placebo).
Milk drink with no extra vitamin D (placebo)
다른 이름들:
  • 위약
실험적: Umeå, vitamin D 25 microg/d, dark skin
Participants with dark skin will be randomized to a milk drink providing 25 microg vitamin D3 per day.
The vitamin D supplement will be provided as a milk drink taken daily.

연구는 무엇을 측정합니까?

주요 결과 측정

결과 측정
기간
Serum 25OH-vitamin D levels
기간: 90 days after start of treatment
90 days after start of treatment

2차 결과 측정

결과 측정
측정값 설명
기간
Bone mineralisation
기간: 120 days after start of treatment
Bone mineralisation will be measured with DXA-scan, serum PTH and serum osteocalcin
120 days after start of treatment

기타 결과 측정

결과 측정
측정값 설명
기간
Inflammatory and immunological markers
기간: 90 days after start of treatment
CRP, interleukin (IL) -1 and 2, IL-4, IL-6, I-10, Il-17, CD40 ligand, TNF-alfa, IFNγ, fibrinogen and antisecretory factor
90 days after start of treatment
Behavioral and emotional well-being
기간: 90 days after start of treatment
Parental assessment using Child Behavioral Checklist
90 days after start of treatment

공동 작업자 및 조사자

여기에서 이 연구와 관련된 사람과 조직을 찾을 수 있습니다.

스폰서

협력자

수사관

  • 수석 연구원: Inger Öhlund, Ph.D., Umea University
  • 연구 의자: Torbjörn Lind, M.D., Ph.D., Umea University
  • 연구 의자: Pia Karlsland-Åkesson, M.D., Ph.D., University hospital, Malmö/Lund
  • 연구 의자: Sven-Arne Silfverdal, M.D., Ph.D., Umea University
  • 연구 의자: Olle Hernell, M.D., Ph.D., Umea University

간행물 및 유용한 링크

연구에 대한 정보 입력을 담당하는 사람이 자발적으로 이러한 간행물을 제공합니다. 이것은 연구와 관련된 모든 것에 관한 것일 수 있습니다.

일반 간행물

연구 기록 날짜

이 날짜는 ClinicalTrials.gov에 대한 연구 기록 및 요약 결과 제출의 진행 상황을 추적합니다. 연구 기록 및 보고된 결과는 공개 웹사이트에 게시되기 전에 특정 품질 관리 기준을 충족하는지 확인하기 위해 국립 의학 도서관(NLM)에서 검토합니다.

연구 주요 날짜

연구 시작

2012년 11월 1일

기본 완료 (실제)

2013년 4월 1일

연구 완료 (실제)

2013년 7월 1일

연구 등록 날짜

최초 제출

2012년 11월 26일

QC 기준을 충족하는 최초 제출

2012년 11월 30일

처음 게시됨 (추정)

2012년 12월 4일

연구 기록 업데이트

마지막 업데이트 게시됨 (추정)

2016년 11월 1일

QC 기준을 충족하는 마지막 업데이트 제출

2016년 10월 31일

마지막으로 확인됨

2016년 10월 1일

추가 정보

이 정보는 변경 없이 clinicaltrials.gov 웹사이트에서 직접 가져온 것입니다. 귀하의 연구 세부 정보를 변경, 제거 또는 업데이트하도록 요청하는 경우 register@clinicaltrials.gov. 문의하십시오. 변경 사항이 clinicaltrials.gov에 구현되는 즉시 저희 웹사이트에도 자동으로 업데이트됩니다. .

비타민 D 결핍에 대한 임상 시험

Vitamin D 25 microg/d에 대한 임상 시험

3
구독하다